![]() |
|
|
Биотехнология на страже урожаяВ связи с недостаточной эффективностью синтетических феромонов важно отметить роль растений в образовании природных аттрактантов. Так, например, в состав агрегационного феромона жука большого ильмового заболонника — переносчика голландской болезни вязов, входит α-кубебен, являющийся метаболитом дерева-хозяина. В состав феромонного комплекса жука-лубоеда входит мирцен, также образуемый растениями. Насекрмые могут использовать некоторые алкалоиды растений в качестве предшественников при синтезе половых феромонов. Содержащееся в растениях-хозяевах вещество α-пинен служит исходным соединением для биосинтеза цис-вербенола жуками Ips paraconfusus. Интересно в связи с этим отметить, что превращение α -пинена в вербенол осуществляет штамм бактерий В. cereus, выделенный из пищеварительного тракта этих жуков. Синтез предшественников феромонов клетками растений, превращение этих предшественников в феромоны насекомых при участии бактерий свидетельствует о том, что для практических целей могут быть использованы феромоны, полученные не химическим, а биотехнологическим путем использование методов биотехнологии, у в частности метода культуры тканей растений, а также приемов генетической инженерии, может оказаться весьма перспективным при организации производства высокоэффективных феромонов. Существуют три основных пути использования феромонов для борьбы с вредными насекомыми: —обнаружение видов насекомых; —массовый отлов насекомых; —нарушение системы ориентации по запаху, служащей для пространственного объединения особей разного пола. Одним из важнейших путей практического применения естественных и химических феромонов для борьбы с вредными насекомыми является мониторинг состояния популяции, учет численности вредителей с помощью ловушек. Визуальные наблюдения за посевами отнюдь не всегда позволяют выявить присутствие вредителей или установить истинную картину зараженности посевов. Попавшие в ловушки отдельные насекомые свидетельствуют о присутствии определенных видов на ближайшей территории, а количество пойманных насекомых позволяет судить о необходимости принятия мер по подавлению. Благодаря таким обследованиям удается резко сократить расход инсектицидов на борьбу с вредителями, предотвращать распространение насекомых на незаселенной территории. Широкие возможности открывает применение ловушек с феромонами для обнаружения карантинных вредителей. В настоящее время феромоны широко используются для раннего обнаружения объектов карантина (восточная плодожорка, картофельная моль, американская белая бабочка, средиземноморская плодовая муха, калифорнийская щитовка и др.). В 1976 г. специалисты из Министерства сельского хозяйства США разместили почти 17 тыс. ловушек с феромонами тримедлюром, кьюлюром и метилевгенолом на юге страны с целью фиксирования трех опасных вредителей: средиземноморской плодовой мухи, дынной мухи и восточной фруктовой" мухи. Они позволяют быстро обнаружить и уничтожить вредителей, прежде чем те успевают обосноваться на новой территории. Такое раннее выявление вредителей сберегает многие миллионы долларов, которые потребовалось бы истратить на истребление опасных интродуцентов. Для той же цели кольцом ловушек были окружены порты, через которые осуществляется импорт товаров. Если какому-то вредному насекомому все же удается обосноваться, ловушки с феромонами облегчают истребление насекомых, точно указывая местонахождение вредителя, а также, где и когда следует применять химические инсектициды, которые в. этом случае не загрязняют природную среду бесполезно. Так, например, в 1956 г. во Флориде средиземноморская плодовая муха распространилась на площади около 0,4 млн. га. Использование ловушек с аттрактантами для обнаружения местонахождения вредителя и инсектицидов для его уничтожения позволило полностью истребить средиземноморскую плодовую муху до конца следующего года. Американский хлопковый долгоносик, распространенный от восточного Техаса до Атлантического океана, — один из самых опасных вредителей хлопчатника. На его долю приходится три четверти потерь хлопчатника и почти треть инсектицидов, ежегодно используемых в сельском хозяйстве США. В 70-х годах в некоторых штатах США была осуществлена программа подавления популяции хлопкового долгоносика с помощью сексоловушек с грандлуром. На о-ве Рота, расположенном в Тихом океане, восточную фруктовую муху удалось искоренить путем приманивания самцов с помощью аттрактанта метилевгенола на поверхность, покрытую инсектицидом. Таких примеров эффективного применения сексоловушек можно привести немало. Наряду с сексоловушками для создания «самцового вакуума» применяется рассеивание феромона. В этом случае происходит дезориентация самцов. Эффективность этого приема повышается по мере снижения численности популяции вредителя-мишени. При большой плотности популяции самцы могут находить самок случайно. Для дезориентации самцов непарного шелкопряда — опасного вредителя лесных, декоративных и фруктовых деревьев — используют препарат диспарлюр. Он сохраняет свою активность в полевых условиях в течение продолжительного времени. В дозе 20 г/га диспарлюр существенно подавляет численность непарного шелкопряда. Это вещество не оказывает ощутимого воздействия на окружающую среду или другие любые организмы, кроме вредителя. Применение феромонов позволяет не только дезориентировать насекомых и благодаря этому снижать численность вредителей, но и предотвращать расселение их из очагов заражения. Эксперименты, проведенные в Пермской области, показали, что внесение феромона непосредственно в уже имеющиеся очаги высокой численности короеда-гипографа прекращает разлет жуков из этих очагов в другие места. Первый отечественный феромон восточной плодожорки был синтезирован в середине 70-х годов. В 1975—1980 гг. в нашей стране были проведены испытания ловушек и феромонов отечественного и американского производства. Оказалось, что улавливающая способность ловушек, изготовленных в нашей стране, в 2 раза выше американских. Расчеты ученых показывают, что для подавления популяции вредителя при высокой ее исходной численности требуется около 4,5 тыс. ловушек на 1 га или 50 — на одно дерево. Но при небольшой численности для защиты сада достаточно использовать 30—50 ловушек на 1га. Для развития нового направления борьбы с вредителями полей и садов необходимо создать высокоэффективные препаративные формы феромонов. Стоимость феромонов высока, поэтому учёные разработали такие методы их использования, когда испарение действующего вещества происходит медленно, в течение длительного времени. Так, например, для борьбы с непарным шелкопрядом применяются микрокапсулы, содержащие диспарлюр — половой аттрактант этого насекомого. Он широко используется в США в качестве средства прямой борьбы с этим чрезвычайно опасным вредителем. Диспарлюр вызывает дезориентацию самцов, которые становятся половозрелыми раньше, чем самки. Микрокапсулы аттрактанта представляют соббй шарики из желатина или полиамида диаметром от 3 до 40 мкм, внутри которых заключен медленно испаряющийся феромон. С помощью таких микрокапсул удается снизить численность непарного шелкопряда за четыре недели на 98 %. Ученые интенсивно работают над совершенствованием полимерных диспенсеров (носителей) и способов их разбрасывания. В США используются два типа диспенсеров — фиброволокна фирмы Конрел и трехслойные полимерные пластинки фирмы Геркон. Норма расхода феромона обычно составляет несколько граммов на 1 га в течение сезона. По мнению специалистов, в ближайшие годы феромоны будут широко использоваться для борьбы с вредителями плодовых культур, хлопчатника, кукурузы и некоторых технических культур. Применение физиологически активных веществ для борьбы с вредными насекомыми представляется чрезвычайно перспективным. Наряду с феромонами в целях защиты растений могут быть использованы другие физиологически активные вещества насекомых. Железы внутренней секреции продуцируют различные гормоны. Наиболее изученными являются ювенильный (или личиночный) гормон и гормон линьки (экдизон). Они играют важную роль в гормональной регуляции развития насекомых. Вместе с тем специалисты в области защиты растения могут использовать эти гормоны для нарушения нормального хода развития и размножения насекомых. Использование гормональных препаратов для борьбы с вредными насекомыми имеет специфические особенности. Применение их не обеспечивает моментальную гибель насекомых, поэтому вредители в случае массового распространения могут нанести растениям существенный вред. Кроме того, критический период действия гормонов ограничен во времени, что также затрудняет их использование. Однако определенные преимущества гормональных препаратов (они не накапливаются в организме, малотоксичны для позвоночных животных, к ним невозможно привыкание насекомых) побуждают ученых вести дальнейшие исследования в направлении практического использования этих веществ в борьбе с вредными насекомыми. Эти исследования окажутся еще более продуктивными, если будут" проводиться с использованием методов биотехнологии и генетической инженерии. Установлено, что вещества, аналогичные гормонам насекомых, продуцируются рядом растений. Эти вещества, например, фитозкдизоны, могут производиться в ферментерах методом культуры растительных тканей. Важный аспект защиты растений — борьба с сорной растительностью. В настоящее время для борьбы с сорной растительностью широко применяется химический метод, основанный на использовании гербицидов. Повсеместное использование гербицидов в современном растениеводстве обусловлено тем, что это рентабельный способ повышения урожайности сельскохозяйственных культур, высокоэффективный метод повышения производительности труда в сельском хозяйстве. Существенным недостатком гербицидов является их более или менее выраженная токсичность для животных и человека. Вместе с ливневыми водами, а также в результате сноса аэрозолей они могут попадать в водоемы, отравляя там все живое, делая воду непригодной для потребления животными и человеком. Кроме того, они могут накапливаться в растительных кормах и животноводческих продуктах. В связи с этим ученые интенсивно работают над повышением, роли так называемого биологического метода борьбы с сорной растительностью, включающего использование для этой цели живых организмов или продуктов их жизнедеятельности. И здесь открывается широкое поле для применения достижений биотехнологии генетической инженерии. С помощью биотехнологических приемов можно быстро размножить организмы, уничтожающие сорные растения, производить пригодные для той же цели вещества. К настоящему времени получены гербициды нового поколения, более перспективные как с точки зрения эффективности, так и с позиций экотоксикологии. Их получают, в частности, из микроорганизмов. Одно из преимуществ производства микробных гербицидов — универсальность оборудования (ферментеров), необходимых для культивирования гербицидсинтезирующих микроорганизмов. Второе существенное преимущество микробиологического производства пестицидов — значительно меньшее отрицательное воздействие посредством отходов и выбросов на окружающую среду. В-третьих, гербициды микробного происхождения, не являются чужеродными для природной среды. Актиномицеты, обитающие в почве, постоянно вырабатывают их и выделяют в окружающую среду. Вполне естественно, в почвенном биоценозе в ходе эволюции возникли системы, направленные на деградацию веществ, выделяемых актиномицетами. Эти системы будут функционировать и в том случае, если мы обработаем растения гербицидами, полученными при участии актиномицетов в ферментере. Благодаря этому в природной среде не будет происходить накопления токсичных веществ. Кстати, это обстоятельство должно учитываться при разработке методов использования микробных гербицидов: многие из них будут обладать низкой эффективностью при внесении в почву. В настоящее время известен ряд микроорганизмов, которые уже являются или могут быть значимыми продуцентами гербицидов. Их использование в практике предполагает проведение более глубоких исследований в области главным образом генетической инженерии, что обеспечит интенсивное использование микроорганизмов в многотоннажных биотехнологических производствах. В Японии для борьбы с сорной растительностью предполагается использовать гербицид биалафос, продуцируемый актиномицетами Streptomyces hygrosporicus и S. viridochromogenes. Этот гербицид обладает широким спектром действия на такие сорняки, как ежовник обыкновенный, марь белая, сыть круглая при послевсходовом его применении на всуех фазах роста растений. При внесении в почву биалафос практически неэффективен по причине, указанной выше. После опрыскивания растений раствором гербицид быстро, перемещается в корни, затем растение гибнет. В этом отношении биалафос сходен с гербицидом глифосатом (фосфоно-метилглй1дином), однако его действие на сорные растения проявляется более сильно. Рекомендуемая доза составляет 1 кг/га. В настоящее время в Японии налаживается, производство этого препарата. Предполагается, что он найдет широкое применение. Ученые не без оснований считают его чрезвычайно перспективным с точки зрения механизма действия. Он, очевидно, окажется в поле зрения физиологов растений, биохимиков, специалистов в области генетической инженерии. Некоторые штаммы актиномицетов продуцируют вещество, называемое анисомицином, которое характеризуется тем, что замедляет рост корешков у проростков таких растений, как ежовник, люцерна, томаты, пальчатка и др. Это вещество стало исходным в получении целого ряда производных. Результатом исследования структуры и биологической активности этих производных явилось создание нового гербицида под названием «метоксифенон». Это вещество обладает высокой эффективностью против многих однолетних видов сорняков. Применяют его перед появлением всходов. Появляющиеся всходы поглощают гербицид, в результате чего возникает хлороз, приводящий к отмиранию сорняков. Гербицид предназначен для использования в посевах риса. Первоначально в фильтрате S. saganonensis 4075 были обнаружены два метаболита с гербицидной активностью, так называемые гербицидины А и В, а позднее еще три — С, Д, Е. Они оказывают избирательное контактное гербицидное действие на двудольные сорняки, подавляют прорастание семян. Вопрос об их практическом использовании пока не решен. Известны и другие гербицидоподобные вещества микроорганизмов, такие; как нарамицин, тойокамицин, пиолютерион, цитобарицин, формицин А и В. Перспективными продуцентами гербицидоподобных веществ рассматриваются S. toyocaensis, гриб ирпекс (Irpex pacyodon). Как эффективный гербицид действует ризобитоксин в дозе 0,2 кг/га, синтезируемый некоторыми штаммами Rhizobium japonicum. Результаты практического использования препаратов микробного происхождения для защиты растений от сорняков пока несравненно более скромные по сравнению с масштабами применения классических гербицидов. Однако микробные препараты открывают принципиально новые возможности с точки зрения охраны окружающей человека среды. Специалисты в области защиты растений считают, что в ближайшие годы производство гербицидов микробного происхождения, вырабатываемых на биотехнологических предприятиях, резко возрастет. Ожидается, что свой вклад в развитие их производства внесет генетическая инженерия. Источником получения гербицидов могут быть не только микроорганизмы, но и высшие растения. Дело в том, что они синтезируют самые разнообразные вещества, часть из которых через корни выделяется в почву. Среди корневых выделений растений имеются соединения, губительно влияющие на другие растения. Весьма интенсивным гербицидным, бактерицидным и фунгицидным действием обладает, например, агропирен, выделяемый в среду сорняком пыреем ползучим. Если из корневищ пырея отогнать эфирное масло, то оно будет содержать около 95 % агропирена. Установлено, что агропирен проникает в корни и листья растений и вызывает сначала повреждение кончиков корней, а затем отмирание корневой системы. Проникая в сосуды, он перемещается по растению и отравляет наиболее молодые части растений. В настоящее время ученые исследуют коллекции сортов различных культур в отношении выделения ими веществ, угнетающих сорную растительность. Сорта, обладающие такой способностью, при выращивании не требуют внесения гербицидов. В настоящее время методы генетической и клеточной инженерии все чаще начинают применяться для создания растений, устойчивых к болезням, вредителям и токсическим веществам. Так, например, с помощью плазмид опухолеобразующей бактерии Agrobacterium tumefaciens были получены устойчивые к антибиотику канамицину растения табака и томатов. Путем перенесения в клетки табака, сои, хлопчатника и томатов гена устойчивости к гербициду глифосату удалось повысить их резистентность к обработке гербицидами. В растения табака был перенесен ген, контролирующий синтез токсичного для личинок насекомых белка В. thuringiensis. Ген, контролирующий образование токсичного для личинок белка, предварительно был клонирован и введен в кишечную палочку. Благодаря повышению устойчивости табака по отношению к вредным насекомым удалось снизить уровень химической защиты его от насекомых. Получение растений-регенерантов, устойчивых к абиотическим и биотическим стрессовым факторам методами клеточной инженерии Засуха. Недостаток воды в почве наносит значительно больший урон растениеводству, чем все остальные стрессовые факторы, вместе взятые. Засуха приводит к возникновению водного дефицита в почве и соответственно в растениях, вызывая у них водный стресс. Хотя термин «засуха» относится главным образом к почвенному водному стрессу, он включает также воздействие жары на растения. Стресс, вызванный водным дефицитом, может быть первичным в случае засухи, а также вторичным при низкотемпературном, тепловом или солевом стрессах. Стресс, вызванный засухой, ведет к прямым или непрямым повреждениям растений, которые обусловлены инактивацией ферментов, нарушением биохимических путей, накоплением токсических веществ, утечкой ионов, дефицитом питания и другими причинами. С целью имитации in vitro стрессового эффекта засухи могут применяться питательные среды, которые дополнены осмотически активными веществами, понижающими внешний водный потенциал. В качестве такого селективного агента, для селекции на устойчивость к засухе были использованы полиэтиленгликоль (ПЭГ), представляющий собой непроникающее в клетку осмотически активное вещество. Первое сообщение о выделении клеточных линий табака, устойчивых к стрессу, индуцированному ПЭГ, появилось в 1979 г. (Heyser, Nabors, 1979). Позже для селекции на засухоустойчивость Р. Брессан с соавт. использовал клеточные линии томата, которые подвергались водному стрессу при культивировании каллусной ткани в присутствии ПЭГ 6000 в концентрации 15 %. В результате опытов были отобраны устойчивые каллусные линии, однако устойчивость быстро терялась при культивировании каллуса на среде без осмотика, что указывает на физиологическую природу адаптации. Тестирование каллусных линий на рост в присутствии ПЭГ предложено для идентификации выносливых к засухе генотипов сои. Анализ роста каллусных тканей десяти сортов сои на средах с 0,15, 20 % ПЭГ 8000 свидетельствовал о корреляции засухоустойчивости у растений и толерантности к ПЭГ культивируемых клеток. Для получения адаптированных к водному стрессу клеточных линий также применялись среды, содержащие в качестве осмотика 99—880 мМ маннитол. Как и в предыдущем случае, осмотически адаптированные клетки обладали повышенной выносливостью к солевому стрессу. Засоление. Одним из лимитирующих факторов сельскохозяйственной продуктивности является засоление почв. Около 900 млн. га всех земель нашей планеты имеют повышенное содержание солей, а количество засоленных почв с каждым годом возрастает. Особую тревогу вызывает увеличение в почвах содержания солей, которое происходит в результате их искусственного орошения. Решение данной проблемы во многом зависит от разработки рациональных агротехнических приемов, правильной методологии орошения, использования для полива частично или полностью обессоленной воды. С развитием биотехнологии растений потенциально возможным является получение солевыносливых генотипов у важных сельскохозяйственных культур путем селекции на уровне соматических клеток, слияния протопластов или переноса генов при использовании техники рекомбинантных молекул ДНК. Вредное действие засоления имеет комплексный характер и обусловлено как нарушением осмотического баланса клетки, так и прямым токсическим влиянием ионов натрия, хлора на физиологические и биохимические процессы в клетке. Результатом такого действия может быть уменьшение тургора клетки, ингибирование функции мембран и активности ферментов, подавление фотосинтеза, нехватки отдельных ионов из-за нарушения селективного транспорта ионов, использование значительного количества энергии для поддержания толерантности. Основные типы реакций растений, возникающие в ответ на повышение концентрации солей во внешней среде. Экспериментальные данные, полученные многими учеными, показывают, что клеточные механизмы выносливости к засолению являются сходными для культивируемых in vitro клеток и целых растений и что селекция на клеточном уровне представляет реальную перспективу получения устойчивых к засолению форм растений. Большинство селекционных программ направлены на выделение in vitro клеточных линий, толерантных к присутствию в среде для культивирования клеток хлорида натрия. Так, показано, что выращивая гаплоидные каллусные клетки табака на среде с постоянно увеличивающейся концентрацией солей, получены клеточные линии, способные к росту в присутствии 1 % NaCl. M. Наборе с соав. предварительно обработав суспензионную культуру табака мутагеном (0,15 % ЭМС, 60 мин), путем одноступенчатой селекции выделили клеточные линии, устойчивые к 0,5 % NaCl. Отмечено, что выносливость, полученных регенерантов к засолению, проявлялась на уровне целых растений. На кафедре сельскохозяйственной биотехнологии Московской сельскохозяйственной академии им. К.А. Тимирязева проводились исследования по получению солеустойчивых растений на примере яровых твердых и мягких пшениц. Первичным эксплантом служили как изолированные незрелые зародыши, так и гаплоиды. Клеточную селекцию проводили на каллусной ткани, культивируемой на питательной среде, содержащей 0,3 %NaCI или Na2SO4 в течение 5—6 пассажей. В результате исследований были получены устойчивые клеточные линии, а также растения-регенеранты. Тестирование на солеустойчивость первого семенного поколения растении-регенерантов методом регистрации замедленной флоуроесценции показало, что фотосинтетический аппарат некоторых растении-регенерантов по устойчивости к засолению превосходит исходный сорт (Никифорова И.Д., 1993, 1994). Солевыносливость растений удается также повысить в результате селекции к одному фактору засоления осмотическому стрессу. Например, клетки томата, адаптированные к водному стрессу, индуцированному полиэтиленгликолем, обладали повышенной устойчивостью к NaС1. Повышенная толерантность к соли обнаружена у клеточных линий моркови, отобранных на среде, содержащей в качестве осмотика маннитол в высокой концентрации (99—870 мМ). Из этих результатов следует, что адаптация клеток к осмотическому стрессу применима для отбора солевыносливых вариантов, а исследования подобного рода представляют интерес для изучения как во взаимодействии, так и независимо друг от друга. Металлы. Присутствие в почве в большом количестве ионов металлов, токсически влияющих на растения, или недостаток ионов, используемых растениями в качестве питательных веществ, могут быть причиной ионного (минерального) стресса у растений. Особое внимание ученых привлекает изучение стрессов, обусловленных наличием в почве ионов тяжелых металлов, многие из которых токсически влияют как на растительные, так и на животные организмы. Стрессовое состояние у растений может быть индуцировано ионами таких тяжелых металлов, как цинк, кадмий, медь, ртуть; они также довольно часто встречаются и в почвах, механизмы устойчивости к токсическим ионам могут исключать уменьшение проницаемости плазмалеммы, детоксикацию ионов в результате связывания с органическими веществами, компартментализацию в вакуолях, а также изменения структуры ферментов, которые являются их мишенями. Работы по клеточной селекции растений на устойчивость к ионным стрессам начаты недавно, но уже имеют положительный результат. Во всех экспериментах используется метод прямой селекции, при котором в качестве селективного агента применяли токсические концентрации солей. Однако создание стрессовых селективных условий in vitro, идентичных таковым в природе, крайне затруднительно. В природных условиях помимо токсического действия ионов накладываются другие факторы, в частности наличие различных веществ, кислотность почвы и т. д. Для селекции на клеточном уровне используют питательные среды, которые хотя не полностью соответствовали естественным стрессовым условиям, все же обеспечивали экспрессию признака устойчивости и давали возможность отбирать нужные варианты. Путем прямой селекции in vitro отобраны клеточные линии петунии, устойчивые к ртути, сорго—к алюминию, моркови — к алюминию и марганцу одновременно; суспензионные клеточные культуры дурмана — к кадмию. На кафедре сельскохозяйственной биотехнологии МСХА также проводились работы по получению клеточных линий и растений-регенерантов льна-долгунца, устойчивых к соли нитрата кадмия и изучалось действие этой соли на интактные растения. Экспериментально показано, что присутствие ионов кадмия в почве приводит к торможению роста стеблевой и корневой частей растения, к сокращению на 7—9 дней онтогенетических фаз развития, следующих за фазой «елочки» по сравнению с контролем, культурные виды накапливают ионы кадмия в вегетативной массе, в то время как дикие — нет. Мезо- и ультраструктурный анализ стеблей льна-долгунца показал, что присутствие кадмия в субстрате приводило к уменьшению количества клеток элементарных волоконец в пучке, к некомпактному расположению клеток элементарных волоконец в лубяных пучках, а также к формированию клеток элементарных волоконец неодинаковых размеров в пределах одного пучка и к различным срокам формирования вторичной клеточной стенки. В результате клеточной селекции были получены растения-регенеранты, обладающие устойчивостью к соли кадмия (Гончарук Е.А., 2000). Экстремальные температуры. Причиной стрессового фактора у растений могут быть относительно высокие или низкие температуры. Работ по клеточной селекции на устойчивость к этим стрессам немного. В изученной нами литературе сведений о клеточной селекции к тепловому шоку не обнаружено, хотя белки теплового шока являются предметом пристального изучения биологов различного профиля. Что касается работ по клеточной селекции к низкотемпературным факторам, то они имеют место. Холодовой стресс у растений может быть вызван температурами большого диапазона: от 10—15° до 0°С. Такому стрессу наиболее подвержены растения тропических и субтропических зон. Стойкость растений к охлаждению обусловлена способностью липидов мембран оставаться в жидком состоянии благодаря наличию большой пропорции ненасыщенных жирных кислот и/или повышенного содержания стеролов. Повреждения, вызванные промораживанием растений (температура ниже 0°С) связаны прежде всего с формированием внеклеточного льда. При этом отток воды во внеклеточное пространство приводит к вторичному эффекту, вызванному водным стрессом. Нарушения, вызываемые отрицательными температурами, могут быть предотвращены аккумуляцией антифризных веществ, уменьшением количества несвязанной воды при обезвоживании и увеличением способности переохлаждаться. Большинство авторов отмечают, что у растений происходят глубокие превращения запасных питательных веществ, в частности, у морозоустойчивых древесных растений накопление большого количества жиров, а у менее устойчивых — Сахаров. Первые эксперименты, в которых описана возможность использования культивируемых растительных клеток для отбора выносливых к низким температурам клеточных линий, опубликованы в 1976 г. (Dix, Street, 1976). Работы проводились на суспензионных культурах табака и перца, которые после высева на агаризованные среды подвергались в течение 21 дня соответственно температурам — 3° и 4°С. Среди отобранных клонов обнаружены линии, стабильно сохраняющие повышенную холодоустойчивость. Основываясь на имеющихся в этой области исследований данных, однозначный ответ о применимости прямой селекции in vitro растений, выносливых к низкой температуре, давать пока рано. Несомненно, однако, что индукция in vitro генетического разнообразия найдет применение для отбора более выносливых вариантов. Список литературы 1. Биотехнология – агропромышленному комплексу // В.И.Артамонов. – М.:Наука, 1989г. – 160 с. 2. Сельскохозяйственная биотехнология: Учеб/В.С.Шевелуха, Калашникова Е.А. и др.; Под ред. В.С.Шевелухи – 2-е изд. перераб. и доп. – М.: Высш. шк., 2003. -496. |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, курсовые, дипломы, научные работы, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |