![]() |
|
|
История развития компьютеров (Silicon Valley, its history the best companies)again. The EPROM was initially viewed as a "prototyping device" for R&D. The invention of the microprocessor in the same year, however, showed the real significance of the EPROM, which could be used by original equipment manufacturer (OEM) customers (they build the end-products) to store microprocessor programs in a "flexible and low-cost way." The "unexpected synergy" between the EPROM and the microprocessor resulted in a growing market for both chips and contributed a great deal to Intel's early success.) "Ted" Hoff's first microprocessor The invention of the microprocessor marked a turning point in Intel's history. This development "changed not only the future of the company, but much of the industrial world.") The story to this technological breakthrough began in 1969, when a Japanese calculator manufacturer called Busicomp asked Intel to design a set of chips for a family of programmable calculators. Marcian "Ted" Hoff, a young and "very bright ex-Stanford research associate") who had joined Intel as employee number 12, was charged with this project. However, he did not like the Japanese design calling for 12 custom chips - each of them was assigned a distinct task. Hoff thought designing so many different chip s would make the calculators as expensive as minicomputers such as DEC's PDP-8, although they could merely be used for calculation. His idea was to develop a four- chip set with a general-purpose logic device as its center, which could be programmed by inst ructions stored on a semiconductor memory chip. This was the theory behind the first microprocessor. With the help of new employee Stan Mazor, Hoff perfected the design of what would be the 4004 arithmetic chip. After Busicomp had accepted Hoff's chip set, Frederico Faggin, one of the best chip design experts, who had been hired recently, began transforming the design into silicon. The 4004 microprocessor, a 4-bit chip (processes 4 bits - a string of four ones or zeroes - of information at a time), contained 2300 MOS transistors, and was as powerful as the legendary first electronic computer, ENIAC. Soon after the first 4004s had been delivered to Busicomp, Intel realized the market potential of the chip, and successfully renegotiated with the Japanese to regain the exclusive rights, which had been sold to Busicomp. In November 1971, Intel introduced the 4004 to the public in an Electronic News ad. It announced not just a new product, but "a new era of integrated electronics [...], a micro programmable computer on a chip.") The microprocessor is - as Gordon Moore call s it - "one of the most revolutionary products in the history of mankind,") and ranks as one of 12 milestones of American technology in a survey of U.S. News and World Report in 1982. This chip is the actual computer itself: It is the central processing u nit (CPU) - the computer's brains. The microprocessor made possible the microcomputer, which is "as big as it is only to accommodate us." For "we'd have a hard time getting information into or out of a microprocessor without a keyboard, a printer and a terminal," as Th.Mahon puts it.) However significant Hoff's invention, nevertheless, it was hardly noticed in the public until early 1973. The microprocessor had its own instruction set and was to be programmed in order to execute specific tasks. So Ted Hoff had to inform the public and t he engineers about the capabilities of the new device and how to program it. Cooperation with IBM in the 1980s Intel's measures in the late 1970s as a reaction to increasing competition from other chip manufacturers paid off greatly and resulted in a remarkable technological lead against its competitors. The most significant consequence, which was a landmark in the company's development, was IBM's decision to rely on the Intel 8088 microprocessor for its PCs in 1980. IBM (short for International Business Machines) has been the world's leading company in the big mainframe computers since the 1950s. Due to its dominance, it was often compared with a giant and referred to as "Big Blue." Surprisingly, it was not before 198 1 (the PC revolution had already been on for a few years) that IBM introduced its own Personal Computer. Because of IBM's dominance and worldwide reputation, its PCs soon became industry standard and penetrated the office market: other established computer companies followed and introduced their own PCs - the so-called "clones" - which were compatible to IBM' s models. To maintain compatibility, all these manufacturers were forced to rely on Intel's microprocessors, which thus were bootstrapped to industry standard, too. As well as for Intel, the CPU manufacturer, IBM's decision has been crucial for a company in the software field: Microsoft's (Redmond, Washington) MS- DOS was chosen as the IBM PC's operating system and became industry standard. It is essential to every IBM compatible PC. Microsoft, a small company in 1980, grew explosively, and is today's superior software giant. At the beginning of the 1980s, IBM was concerned about Intel's ability to keep investing in R&D and therefore decided to support Intel by buying $250 million (=12%) of the company's stock. This endorsed Intel's position, and, in 1987, IBM sold the last of its shares in a strong Intel. Intel today Annual report 2000 [pic][pic][pic] [pic][pic][pic] [pic][pic][pic] [pic][pic][pic] Today, Intel supplies the computing and communications industries with chips, boards and systems building blocks that are the "ingredients" of computers, servers, and networking and communications products. Industry members to create advanced computing and communications systems use these products. Intel's mission is to be the preeminent building block supplier to the worldwide Internet economy. [pic] Intel® Architecture platform products[pic] Microprocessors, also called central processing units (CPUs) or chips, are frequently described as the "brains" of a computer, because they control the central processing of data in personal computers (PCs), servers, workstations and other computers. Intel offers microprocessors optimized for each segment of the computing market: Intel® Pentium® III Xeon™ processors for mid-range to high-end servers and workstations Intel® Pentium® 4 and Pentium® III processors for entry-level servers and workstations and performance desktop PCs Intel® Celeron™ processors for value PC systems Mobile Pentium® III processors for performance in mobile PC systems Chipsets perform essential logic functions surrounding the CPU in computers, and support and extend the graphics, video and other capabilities of many Intel processor-based systems. Motherboards combine Intel microprocessors and chipsets to form the basic subsystem of a PC or server. e-Business solutions enable services and channel programs to accelerate integration and deployment of Intel Architecture-based systems and products. [pic]Wireless communications and computing products[pic] These products are component-level hardware and software focusing on digital cellular communications and other applications needing both low-power processing and high performance. These products are used in mobile phones, handheld devices, two-way pagers and many other products. For these markets, Intel offers Intel® Flash memory, application processors based on the Intel® StrongARM processor core, and base band chipsets for cellular phones and other wireless devices. Networking and communications products[pic] Communications building blocks for next-generation networks and Internet data centers are offered at various levels of integration. These products are used in communications servers, network appliances and computer telephony integration equipment. Component-level building blocks include communications silicon such as network processors and other board-level components, software and embedded control chips. These products are integrated in communications hardware such as hubs, routers, switches and servers for local and wide area networking applications. Embedded control chips are also used in laser printers, imaging, automotive systems and other applications. New business products[pic] These products and services include e-Commerce data center services as well as connected peripherals. [pic] Intel's major customers include: Original equipment manufacturers[pic] (OEMs) of computer systems, cellular phone and handheld computing devices, telecommunications and networking communications equipment, and peripherals. Users of PC and network communications products[pic] including individuals, large and small businesses, and Internet service providers—who buy Intel's PC enhancements, business communications products and networking products through reseller, retail, e-Business and OEM channels. Other manufacturers[pic] including makers of a wide range of industrial and communications equipment. The emergence of the PC industry Until the early 1970s, computers were huge machines - from the largest ones, the supercomputers, to mainframes and minicomputers - and were mainly used for scientific research in universities and in military institutions, and for business calculations in major companies. Surprisingly, when the first microprocessors appeared, none of the established companies such as IBM, DEC or HP had the idea to build small, personal computers. They just did not see any market for them and could not imagine what those machines should be needed for. None of these large companies anticipated the possibilities of PCs, which are today used in almost every office, in the home, in the school, on airplanes, etc. and can act as typewriters, calculators, accounting systems, telecommunications instruments, libraries, tutors, toys and many the like. So, it was the hobbyists, single electronics wizards who liked tinkering with electronic devices that constructed their own computers as the first PCs. These "computer nuts" ignited the "fire in the valley;") they launched the personal computer revolution in Silicon Valley "out of their own fascination with the technology. The personal computer arose from a spirit of sharing "hard-won technical information" with other computer freaks who developed their devices for the fun of tinkering around in this fascinating field of electronics. Some of these frequently young hobbyists found themselves almost overnight as millionaires, after they had sold their devices in a newly founded firm. Before dealing with the story of Apple, which is typical of Silicon Valley and responsible for the breakthrough of the personal computer, some information about the first PC and the emergence of the PC industry shall be given. Altair - the first PC Altair is often regarded as the first personal computer, although it was one of those switches and lights computers - programming is done by arranging a set of switches in a special order, and the results appear as different combinations of lights. In other words, such a machine is a genuine computer, but absolutely useless, as Steve Wozniak, one of the PC pioneers, put it.) After the first microprocessors had come onto the market, Ed Roberts, an engineer at MITS, a small calculator company in Texas, decided to build a kit computer, which he intended to sell to hobbyists. He chose Intel's 8080 as the CPU for his computer, since this chip was the most advanced and powerful at the time. As Roberts wanted to sell his computer for less than $500 and the official price for the 8080 was already at $360, he contacted Intel and could finally receive the chip for only $75 apiece. By the end of 1974, Roberts finished his computer, which was named Altair. When the Altair was introduced on the cover of the January 1975 issue of Popular Electronics as the first personal computer, which would go for $397 only, the market response was in credible. The low price was the actual sensation, because it was largely known that the price for the Intel 8080 CPU powering the Altair was already at $360. So many hobbyists, engineers and programmers who had keenly waited for their own personal computer, which they could experiment on at home, welcomed the new product and ordered "their" Altair on the spot. Roberts had never expected such a great response and his small firm was flooded by those immediate orders (more than 4000). He boosted up the production, but still could not meet the huge demand. The Altair was a success at first, and Roberts sold many of them. However, he had increased production at the expense of quality and further refinement of his computer, so the Altair brought along a lot of trouble and was finally supplanted by other computers, which were superior. Nevertheless, the Altair as the first successful microcomputer, contributed a lot to the PC revolution, since it encouraged other people to build personal computers (e.g. IMSAI, Apple). The first computer shops During this time, the mid-1970s, the first computer shops came into existence. Pioneering in this field was Paul Terrell who came to the idea of running such a shop, after the Altair had been put onto the market. His first Byte Shop opened in Mountain View (located in the heart of Silicon Valley) by the end of 1975. Initially, Terrell sold the Altair and accessory products such as additional memory boards and other devices, which came onto the market. With the arising microcomputer industry, he could offer his customers - mainly hobbyists and engineers - more and more products, and his shop became a success. Other Byte Shops were opened and Terrell's computer shop chain expanded beyond the Silicon Valley. The computer shops provided its customers with a variety of devices around the computer and also with service and help. The Altair was shipped as a kit computer and was to be assembled first, and then it was still not difficult to work with it. The hobbyists helped each other with advice. It was this spirit of sharing solutions and the common interest in microcomputers that led to the foundation of the first computer club. Homebrew Computer Club The legendary Homebrew Computer Club was the first of its kind, and provided an early impetus for the development of the microcomputer industry in Silicon Valley. Its first meeting in March 1975 was held in one of its members' garage in Menlo Park in Santa Clara County. The Homebrew members were engineers and computer enthusiasts who discussed about the Altair and other technical topics. The club attracted many hobbyists and was attended by nearly 750 people one year after its foundation. The Homebrew Computer Club had its own philosophy. People meet, because they were interested in computers and liked tinkering with them, but not for commercial reasons - at least in its early times. Its members "exchanged information about all aspects of micro computing technology") and talked about devices they had designed. From its ranks came the founders of many microcomputer companies - for example Bob Marsh, Adam Osborne, or Steve Jobs and Steven Wozniak - the famous Apple founders. The Homebrew Computer Club is the place where the roots of many Silicon Valley microcomputer companies are located. It has "spawned a revolution in micro processing") and represents an "important step in the development of a multi-billion dollar industry. The Apple Story Apple provides one of Silicon Valley's most famous stories. It shows features that are typical for most start-up firms in the valley, however, it is unique and its early success and its contribution to the personal computer are unmatched. "Woz" and Jobs - the two "Steves" Apple's history starts with the story of two young and exceptional people who began building a computer in their garage and "launched the microcomputer revolution,") changing our daily life in many respects. The Apple story is the story of the two "Steves". Stephen G. Wozniak was a typical Silicon Valley child. Born in 1950, he had grown up with the electronics industry in Silicon Valley, and had been intrigued by electronics from the start, since his father w as an electronics engineer. Wozniak, known to his friends as "Woz", was bright and was an electronics genius. At the age of 13, he won the highest award at a local science fair for his addition-subtraction machine. His electronics teacher at Homestead High School recognized Woz's outstanding talent and arranged a job for him at a local company, where Steve could work with computers once a week. It was there that Wozniak saw the capabilities of a computer (it was the DEC PDP-8 minicomputer) and studying the manual, it became his dream to have a computer of his own one-day. He designed computers on paper. Many other students who grew up in Silicon Valley shared this dream. In 1971, Wozniak built his first computer with his high-school friend Bill Fernandez. This computer (they called it Cream Soda Computer) was developed in his friend's garage and had "switches and lights just as the Altair would have more than three years later.") Bill introduced Woz to a friend of his named Steven P. Jobs. Jobs was born in 1955, and his foster parents were - unlike most other people in Silicon Valley - blue-collar workers. However, growing up in an environment full of electronics, Steve came in con tact with this fascinating technology and was caught by it. Jobs was a loner and his character can be described as brash, very ambitious and unshakably self-confident. With his directness and his persistency he persuaded most people. He had the ability to convey his notions and vision to other people quite well. An d he was not afraid to talk to famous people and did never stop talking to them until they gave in and did what he wanted. His traits could already be observed in his adolescence, for instance when he - at the age of thirteen - called famous Bill Hewlett, president of HP, and asked him for spare parts he needed for his frequency counter. Although Steve Jobs was five years younger than Wozniak, "the two got along at once." Apart from their common fascination with electronics, they "shared a certain intensity." Whereas Woz was intense in digging "deeper into an intellectual problem than anyone else," Jobs's intensity was in ambition. Moreover, both were genuine pranksters, and often they fooled others with their technical knowledge.) When they heard of "phone-phreaking" - making free long-distance telephone calls with a device called "blue box" - the two started their first business venture, building those blue boxes. In 1972, Steve Jobs went to Reed College in Oregon; however, there he became more interested in Eastern religions, dropped out a year later and returned to Silicon Valley, where he took a job with Atari (a young video game company) until he had saved enough money to go on a trip to India for some months. Then he went back to California and to his work at Atari. After attending three different colleges, Wozniak had begun work for Hewlett-Packard in summer 1973. When Atari planned to develop a new game called "Breakout," Jobs boasted he could design it in only four days - quicker and better than anyone else. Jobs t old his friend Woz about it, and the two designed the game in record time, working four nights and days, and were paid the promised $700 for it. This experience showed them that they could work together on a tough project and succeed. The first Apple When the Homebrew Computer Club came into existence, Wozniak began attending its meetings. As he later would recall, Homebrew was a revelation |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, курсовые, дипломы, научные работы, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |