реферат скачать
 
Главная | Карта сайта
реферат скачать
РАЗДЕЛЫ

реферат скачать
ПАРТНЕРЫ

реферат скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат скачать
ПОИСК
Введите фамилию автора:


Расчет систем газоснабжения района города

p> А - нормирование (гарантия) механических свойств;

Б - нормирование (гарантия) химического состава;

В - нормирование (гарантия) химического состава и механических свойств;

Г - нормирование (гарантия) химического состава и механических свойств на термообработанных образцах;

Д - без нормируемых показателей химического состава и механических свойств.

Согласно [2] рекомендуется применять трубы следующих групп поставки:

- при расчетной температуре наружного воздуха до - 40 °С - группу В;

- при температуре - 40 °С и ниже - группы В и Г.

При выборе труб для строительства газопроводов следует применять, как правило, трубы, изготовленные из более дешевой углеродистой стали по ГОСТ
380-88 или ГОСТ 1050-88.

11.2 Детали газопроводов.

К деталям газопроводов относятся: отводы, переходы, тройники, заглушки.

Отводы устанавливаются в местах поворотов газопроводов на углы 90° ,
60° или 45°.

Переходы устанавливаются в местах изменения диаметров газопроводов. На чертежах и схемах их изображают следующим образом

Тройники служат для закрытия и герметизации торцевых частей тупиковых участков газопроводов. Их применяют в местах подключения к газопроводам потребителей.

Заглушки служат для закрытия и герметизации торцевых частей тупиковых участков газопроводов. Заглушки представляют собой круг соответствующего диаметра, выполненный из стали тех же марок, что и газопровод. Обозначение деталей газопроводов приводятся в приложении 4 [10].

12. Гидравлический расчёт газопроводов.

Основная задача гидравлических расчетов заключается в том, чтобы определить диаметры газопроводов. С точки зрения методов гидравлические расчеты газопроводов можно разделить на следующие типы: расчет кольцевых сетей высокого и среднего давления; расчет тупиковых сетей высокого и среднего давления; расчет многокольцевых сетей низкого давления; расчет тупиковых сетей низкого давления.

Для проведения гидравлических расчётов необходимо иметь следующие исходные данные: расчетную схему газопровода с указанием на ней номеров и длин участков; часовые расходы газа у всех потребителей, подключенных к данной сети; допустимые перепады давления газа в сети.

Расчетная схема газопровода составляется в упрощенном виде по плану газифицируемого района. Все участки газопроводов как бы выпрямляются и указываются их полные длины со всеми изгибами и поворотами. Точки расположения потребителей газа на плаке определяются местами расположения соответствующих ГРП или ГРУ.

12.1 Гидравлический расчет кольцевых сетей высокого и среднего давления.

Гидравлический режим работы газопроводов высокого и среднего давления назначается из условий максимального газопотребления.

Расчёт подобных сетей состоит из трёх этапов: расчет в аварийных режимах; расчет при нормальном потокораспределении ; расчёт ответвлений от кольцевого газопровода.

ГРП

Расчетная схема газопровода представлена на рис. 2 . Длины отдельных участков указаны в метрах. Номера расчетных участков указаны числами в кружках. Расход газа отдельными потребителями обозначен буквой V и имеет размерность м3/ч. Места изменения расхода газа на кольце обозначены цифрами
0, 1, 2, ..... , и т. д.. Источник питания газом (ГРС) подключен к точке 0.

Газопровод высокого давления имеет в начальной точке 0 избыточное давление газа Р Н =0,6 МПа. Конечное давление газа Р К = 0,15 МПа. Это давление должно поддерживаться у всех потребителей, подключенных к данному кольцу, одинаковым независимо от места их расположения.

В расчетах используется абсолютное давление газа, поэтому расчетные Р Н
=0,7 МПа и РК=0,25 МПа. Длины участков переведены в километры.

Для начало расчёта определяем среднюю удельную разность квадратов давлений:

А СР = (Р2н - Р2к) / 1,1 • S l i где S l i - сумма длин всех участков по расчётному направлению, км.

Множитель 1,1 означает искусственное увеличение длинны газопровода для компенсации различных местных сопротивлений (повороты, задвижки, компенсаторы и т. п.).

Далее, используя среднее значение А СР и расчетный расход газа на соответствующем участке, по номограмме рис. 11.2 [10] определяем диаметр газопровода и по нему, используя ту же номограмму, уточняем значение А для выбранного стандартного диаметра газопровода. Затем по уточненному значению
А и расчетной длине, определяем точное значение разности Р2н - Р2к на участке. Все расчеты сводят в таблицы.

12.1.1 Расчет в аварийных режимах.

Аварийные режимы работы газопровода наступают тогда, когда откажут в работе участки газопровода, примыкающие к точке питания 0. В нашем случае это участки 1 и 18. Питание потребителей в аварийных режимах должно осуществляться по тупиковой сети с условием обязательного поддержания давления газа у последнего потребителя Р К = 0,25 МПа.

Результаты расчетов сводим в табл. 2 и 3.

Расход газа на участках определяется по формуле:

VР = 0,59 • ? (К ОБ i • V i) (м3 / ч), где К ОБ i - коэффициент обеспеченности различных потребителей газа;

V i - часовой расход газа у соответствующего потребителя, м3 / ч.

Для простоты коэффициент обеспеченности принят равным 0,8 у всех потребителей газа.

Расчетную длину участков газопровода определяют по уравнению: l Р = 1,1 • l Г (км),

Средняя удельная разность квадратов давлений в первом аварийном режиме составит:

А СР = (0,72 - 0,252) / 1,1• 6,06 = 0,064 (МПа2 / км),

S l i = 6,06 (км),

Табл. 2.
|Отказал участок 1 |
|№ |d У |l Р |V Р |Р2н-Р2к |Р2н-Р2к , |
|уч. |мм |км |м3 / ч |l Р |МПа2 |
|1 |2 |3 |4 |5 |6 |
|18 |500 |0,077 |10053,831 |0,045 |0,003465 |
|17 |500 |1,848 |9849,4501 |0,04 |0,07392 |
|16 |500 |0,407 |9809,2192 |0,04 |0,01628 |
|15 |500 |0,726 |9796,579 |0,04 |0,02904 |
|14 |400 |0,077 |9787,3632 |0,19 |0,01463 |
|13 |400 |0,473 |9785,6909 |0,19 |0,08987 |
|12 |400 |0,253 |9745,46 |0,18 |0,04554 |
|11 |250 |0,044 |2566,8403 |0,1 |0,0044 |
|10 |250 |0,121 |2554,2002 |0,1 |0,0121 |
|9 |250 |0,22 |1665,1787 |0,053 |0,01166 |
|8 |250 |0,121 |1663,5064 |0,053 |0,006413 |
|7 |250 |0,176 |1459,1257 |0,045 |0,00792 |
|6 |250 |0,154 |1449,9099 |0,045 |0,00693 |
|5 |250 |0,913 |1437,2697 |0,045 |0,041085 |
|4 |200 |0,451 |903,3339 |0,045 |0,020295 |
|3 |150 |0,154 |901,6616 |0,2 |0,0308 |
|2 |100 |0,363 |12,64016 |0,031 |0,011253 |
| | |SlР=6,578| | |S(Р2н-Р2к)=0,42560|
| | | | | |1 |

P К = ?(0,7 2 - 0,425601) - 0,1 = 0,1537696 Ошибка: 1,5 % < 5
%

Отсюда следует, расчёт сделан правильно.

Переходим к расчету во втором аварийном режиме.

Табл. 3.
|Отказал участок 18 |
|№ |d У |l Р |V Р |Р2н-Р2к |Р2н-Р2к , |
|уч. |мм |км |м3 / ч |l Р |МПа2 |
|1 |2 |3 |4 |5 |6 |
|1 |500 |0,22 |10053,831 |0,045 |0,0099 |
|2 |500 |0,231 |10041,191 |0,045 |0,010395 |
|3 |500 |0,154 |9152,1692 |0,038 |0,005852 |
|4 |500 |0,451 |9150,4969 |0,038 |0,017138 |
|5 |400 |0,913 |8616,5611 |0,1 |0,0913 |
|6 |400 |0,154 |8603,9209 |0,1 |0,0154 |
|7 |400 |0,176 |8594,7051 |0,1 |0,0176 |
|8 |400 |0,121 |8390,3244 |0,1 |0,0121 |
|9 |400 |0,22 |8388,6521 |0,1 |0,022 |
|10 |400 |0,121 |7499,6307 |0,085 |0,010285 |
|11 |400 |0,044 |7486,9905 |0,085 |0,00374 |
|12 |125 |0,253 |308,37082 |0,085 |0,021505 |
|13 |125 |0,473 |268,1399 |0,06 |0,02838 |
|14 |125 |0,077 |266,4676 |0,06 |0,00462 |
|15 |125 |0,726 |257,2518 |0,06 |0,04356 |
|16 |125 |0,407 |244,61169 |0,06 |0,02442 |
|17 |125 |1,903 |204,38072 |0,045 |0,085635 |
| | |SlР=6,644| | |S(Р2н-Р2к)=0,42383|

P К = ?(0,7 2 - 0,42383) - 0,1 = 0,1572353 Ошибка: 2,9 % < 5
%

Отсюда следует, расчёт сделан правильно.

На этом расчет во втором аварийном режиме заканчивается.

Зная потери давления на каждом участке, определяем абсолютное давление в каждой точке в обоих аварийных режимах:

P i = ? P 2Н - ?(P 2Н - P 2К) i , где ?(P 2Н - P 2К) - сумма разности квадратов давлений на участках, предшествующих точке определения давления.

Все расчеты по определению давлений в различных точках кольца можно свести в таблицу.

Табл. 4.
|Номер точки|Отказал участок 1|Отказал участок |
|на кольце | |19 |
| |Давление газа, |Давление газа, |
| |МПа |МПа |
|0 |0,7 |0,7 |
|1 |0,2537696 |0,6928925 |
|2 |0,2750491 |0,6853503 |
|3 |0,3262698 |6810675 |
|4 |0,3560154 |0,6683674 |
|5 |0,409673 |0,5961669 |
|6 |0,418055 |0,5831081 |
|7 |0,4274131 |0,567816 |
|8 |0,4348505 |0,5570592 |
|9 |0,4480569 |0,5369497 |
|10 |0,4613621 |0,5272855 |
|11 |0,4661062 |0,523727 |
|12 |0,5126353 |0,5027773 |
|13 |0,593856 |0,473714 |
|14 |0,6060487 |0,4688123 |
|15 |0,6295514 |0,4197916 |
|16 |0,6423512 |0,3896216 |
|17 |0,6975206 |0,2572353 |

Давление газа в точках подключения к кольцу потребителей необходимо знать для определения диаметров ответвлений при гидравлическом расчете последних.

12.1.2 Расчет ответвлений.

В этом расчете определяются диаметры газопроводов, подводящих газ от кольцевого газопровода к потребителям V 1, V 2, ..... , и т. д.. Для этого используется расчет давления в точках изменения расходов 1, 2, 3, .... 17 сведенный в таблицу ? . Перепад давлений в точке подключения газопровода ответвления к кольцевому газопроводу и заданным конечным давлением у потребителя.

Для определения начального давления из таблицы 2,3 для одной и той же точки выбираем наименьшее абсолютное давление газа. Далее определяется удельная разность квадратов давлений на участке:

A = (P 2Н - P 2К) / 1,1 • l Г i , (МПа2 / км),

По номограмме рис. 11.2 из [10] определяем диаметр газопровода.

Все расчеты по определению диаметров ответвлений сводим в таблицу:

А19 = 0,0145;

А20 = 0,1085;

А21 = 0,4997;

А22 = 0,3649;

А23 = 2,3944;

А24 = 0,8501;

А25 = 1,5606;

А26 = 1,1505;

А27 = 0,8376;

А28 = 0,9114;

А29 = 2,3447;

А30 = 2,4715;

А31 = 0,8657;

А32 = 1,7872;

А33 = 1,2924;

А34 = 1,3528;

А35 = 0,0664;

Табл. 5.
|Номер |Начальное |Конечное |Длина |Расход газа, |Диаметр |
|ответв|давление, |давление, |участка, |м3 / ч |условный, |
|-ления|МПа |МПа |Км | |мм |
|. | | | | | |
|19 |0,2538 |0,25 |0,12 |26,78 |125 |
|20 |0,275 |0,25 |0,11 |1883,52 |200 |
|21 |0,3263 |0,25 |0,08 |3,543 |100 |
|22 |0,356 |0,25 |0,16 |1131,22 |150 |
|23 |0,4097 |0,25 |0,04 |26,78 |100 |
|24 |0,418 |0,25 |0,12 |19,525 |100 |
|25 |0,4274 |0,25 |0,07 |433,01 |100 |
|26 |0,4348 |0,25 |0,1 |3,543 |100 |
|27 |0,448 |0,25 |0,15 |1883,52 |250 |
|28 |0,4614 |0,25 |0,15 |26,78 |100 |
|29 |0,4661 |0,25 |0,06 |15208,94 |300 |
|30 |0,5028 |0,25 |0,07 |85,235 |100 |
|31 |0,4737 |0,25 |0,17 |3,543 |100 |
|32 |0,4688 |0,25 |0,08 |19,525 |100 |
|33 |0,4198 |0,25 |0,08 |26,78 |100 |
|34 |0,3896 |0,25 |0,06 |85,235 |100 |
|35 |0,2572 |0,25 |0,05 |433,01 |150 |

12.1.3 Расчёт при нормальном потокораспределении.

Нормальное потокораспределение предполагает движение газа от питания кольца в обе стороны.

Точка схода обоих потоков газа должна находиться где-то на кольце. Эта точка определяется из следующих условий - расходы газа по обоим направлениям кольца должны быть примерно одинаковыми.

Расчёты при нормальном потокораспределении рекомендуется свести в таблицу.

Таблица 6.
|NО |Расход на |Диаметр |Длина |Р2Н-Р2К/|Р2Н-Р2К, |Р2Н-Р2К/VУЧ, |
|участка|участке, |газопровода,|участка, |l, |МПа2 |• 10-6 |
|. |м3/ч | |км |МПа2/км | | |
| | |мм | | | | |
|1 |2 |3 |4 |5 |6 |7 |
|1 |-10650,244|500 |0,2 |0,052 |0,0104 |0,976 |
| |5 | | | | | |
|2 |-10623,464|500 |0,21 |0,052 |0,01092 |1,026 |
| |5 | | | | | |
|3 |-8739,9445|500 |0,14 |0,034 |0,00476 |0,545 |
|4 |-8736,4015|500 |0,41 |0,034 |0,01394 |1,596 |
|5 |-7605,1815|400 |0,83 |0,085 |0,07055 |9,277 |
|6 |-7578,4015|400 |0,14 |0,085 |0,0119 |1,57 |
|7 |-7558,8765|400 |0,16 |0,085 |0,0136 |1,799 |
|8 |-7125,8665|400 |0,11 |0,075 |0,00825 |1,158 |
|9 |-7122,3235|400 |0,2 |0,075 |0,015 |2,106 |
|10 |-5238,8035|400 |0,11 |0,039 |0,00429 |0,819 |
|11 |-5212,0235|400 |0,04 |0,039 |0,00156 |0,299 |
|12 |+9996,9165|400 |0,23 |0,122 |0,02806 |2,807 |
|13 |+10082,151|400 |0,43 |0,122 |0,05246 |5,203 |
| |5 | | | | | |
|14 |+10085,694|400 |0,07 |0,122 |0,00854 |0,847 |
| |5 | | | | | |
|15 |+10105,219|500 |0,66 |0,045 |0,0297 |2,939 |
| |5 | | | | | |
|16 |+10131,999|500 |0,37 |0,045 |0,01665 |1,643 |
| |5 | | | | | |
|17 |+10217,234|500 |1,68 |0,045 |0,0756 |7,399 |
| |5 | | | | | |
|18 |+10650,244|500 |0,07 |0,05 |0,0035 |0,329 |
| |5 | | | | | |
| | | | | |?= 0,37968|?= 42,34•10-6|
| | | | | |+0,04934 | |

* Знаки "+" и "-" означают условное деление потоков газа на положительные (направление по часовой стрелке) и отрицательные (движение против часовой стрелки).

Для определения ошибки надо просуммировать по модулю все числа в графе
6 и оценить разность положительных и отрицательных чисел в этой же графе по нижеприведенной формуле

Ошибка составляет: 0,04934 • 100 / 0,5 • 0,37968 = 25,99 %

Диаметры участков газопровода в этом режиме выбираются из таблицы расчетов в аварийных режимах. Для каждого участка принимается наибольший из двух диаметров. При этом размеры диаметров на головных участках кольца будут наибольшими. Далее размеры диаметров будут монотонно убывать в направлении точки схода потоков.

Для определения удельной разности квадратов давлений на участке используют номограмму рис. 11.2. [10]. Их определяют по известным диаметру и расходу и вносят в графу 5 таблицы . Зная расчетные длины участков, вычисляют разности квадратов давлений на участках и вносят их в графу 6 таблицы .

Критерием правильности расчёта является равенство сумм положительных и отрицательных значений Р2н - Р2к. Если равенства нет, то разность этих значений не должна превышать 10 % от половины абсолютного значения суммы чисел в графе 6 таблицы. В нашем примере эта разность составляет 25,99 %, что слишком много.

Следовательно, расчёт надо повторить.

Для снижения ошибки надо подсчитать так называемый круговой расход по формуле

?V = S(Р2н - Р2к) • 106 / 2 • S(Р2н - Р2к) / Vi.

?V = 0,04934 • 106 / 2 • 42,34 = 582,66 ? 600 (м3/ч),

Сумма в знаменателе этой формулы берется из графы 7 таблицы 6.

Увеличим все положительные расходы на 600 м3/ч, а все отрицательные расходы уменьшим также на 600 м2/ч. Повторим расчет при новых значениях расходов на участках

Таблица 7.
|NО |Расход на |Диаметр |Длина |Р2Н-Р2К/|Р2Н-Р2К, |Р2Н-Р2К/VУЧ, |
|Участка|участке, |газопровода,|участка, |l, |МПа2 |• 10-6 |
|. |м3/ч | |км |МПа2/км | | |
| | |мм | | | | |
|1 |2 |3 |4 |5 |6 |7 |
|1 |-11250,244|500 |0,2 |0,06 |0,012 |0,976 |
| |5 | | | | | |
|2 |-11223,464|500 |0,21 |0,06 |0,0126 |1,026 |
| |5 | | | | | |
|3 |- |500 |0,14 |0,037 |0,00518 |0,545 |
| |9339,9445 | | | | | |
|4 |-9336,4015|500 |0,41 |0,037 |0,01517 |1,596 |
|5 |-8205,1815|400 |0,83 |0,1 |0,083 |9,277 |
|6 |-8178,4015|400 |0,14 |0,1 |0,014 |1,57 |
|7 |-8158,8765|400 |0,16 |0,1 |0,016 |1,799 |
|8 |-7125,8665|400 |0,11 |0,085 |0,00935 |1,158 |
|9 |-7725,3235|400 |0,2 |0,085 |0,017 |2,106 |
|10 |-5838,8035|400 |0,11 |0,048 |0,00528 |0,819 |
|11 |-5812,0235|400 |0,04 |0,048 |0,00192 |0,299 |
|12 |+9396,9165|400 |0,23 |0,117 |0,02691 |2,807 |
|13 |+9482,1515|400 |0,43 |0,117 |0,05031 |5,203 |
|14 |+9485,6945|400 |0,07 |0,117 |0,00819 |0,847 |
|15 |+9505,2195|500 |0,66 |0,038 |0,02508 |2,939 |
|16 |+9531,9995|500 |0,37 |0,038 |0,01406 |1,643 |
|17 |+9617,2345|500 |1,68 |0,038 |0,06384 |7,399 |
|18 |+10050,244|500 |0,07 |0,045 |0,00315 |0,329 |
| |5 | | | | | |
| | | | | |?= 0,38304|?= 43,5•10-6 |
| | | | | |+0,00004 | |

Ошибка составляет: 0,00004 • 100 / 0,5 • 0,38304 = 0,02 %,

После введения кругового расхода ошибка снизилась до 0,02%, что приемлемо.

На этом гидравлический расчет газопровода высокого давления заканчивается.

12.2. Гидравлический расчет многокольцевых газовых сетей низкого давления.

Гидравлический расчет газопроводов низкого давления (до 5 кПа) сводится к решению транспортной задачи с последующей ее оптимизацией.

Исходные данные для расчета:

1. Общий расход газа через ГРП, питающее сеть низкого давления:

V0 = 1883,52 (м3 / ч).

2. Расчетная схема: рис. 3.

3. Расчетный перепад давления в сети:

?P = 1200 (Па).

Задачей гидравлического расчета сети низкого давления является определение диаметров всех ее участков при соблюдении заданного ?P.
Минимальный диаметр труб в сети должен быть равен 50 мм.

Путевые расходы газа на участках определяются по формуле:

VПУТ = l ПР i • V0 / ?l ПР i где l ПР i - приведенная длина участка, м l ПР i = l Р • К Э • К З l Р - расчетная длина участка (l Р = 1,1 • l Г), м; l Г - геометрическая длина участка по плану района газификации, м;

К Э - коэффициент этажности, учитывающий наличие зданий различной этажности;

К З - коэффициент застройки, учитывающий плотность жилой застройки по трассе газопровода.

Расчет путевых расходов газа сводим в таблицу 8.


Табл. 8.
|Номер |Геометрич.|Расчетная |Коэфф. |Коэфф. |Приведеная|Путевой |
|участка| |Длина, |Этажности |Застройки | |расход, |
| |Длина, |м | | |длина, |м3 / ч |
| |м | | | |м | |
|1 |2 |3 |4 |5 |6 |7 |
|0-1 |20 |22 |1 |0 |0 |0 |
|1-2 |100 |110 |1 |1 |110 |48,29538 |
|2-3 |200 |220 |1 |1 |220 |96,59077 |
|1-4 |300 |330 |1 |1 |330 |144,8862 |
|4-5 |300 |330 |1 |1 |330 |144,8862 |
|2-6 |300 |330 |1 |1 |330 |144,8862 |
|3-7 |300 |330 |1 |1 |330 |144,8862 |
|5-6 |400 |440 |1 |1 |440 |193,1815 |
|6-7 |200 |220 |1 |1 |220 |96,59077 |
|7-8 |200 |220 |1 |1 |220 |96,59077 |
|6-9 |200 |220 |1 |1 |220 |96,59077 |
|4-10 |300 |330 |1 |1 |330 |144,8862 |
|3-12 |300 |330 |1 |1 |330 |144,8862 |
|10-14 |200 |220 |1 |1 |220 |96,59077 |
|10-11 |200 |220 |1 |1 |220 |96,59077 |
|12-13 |200 |220 |1 |1 |220 |96,59077 |
|12-14 |200 |220 |1 |1 |220 |96,59077 |
| | | | | |?l ПР = | |
| | | | | |5940 | |

Определяем узловые расходы газа:

V УЗЛ i = 0,5 • ? V ПУТ i , (м3/ч), где ? V ПУТ i - сумма путевых расходов газа на участках, примыкающих к узлу, (м3/ч),

V УЗЛ 1 = 96,59077 (м3/ ч),

V УЗЛ 2 = 144,8862 (м3/ ч),

V УЗЛ 3 = 193,1815 (м3/ ч),

V УЗЛ 4 = 217,3292 (м3/ ч),

V УЗЛ 5 = 169,0338 (м3/ ч),

V УЗЛ 6 = 265,6246 (м3/ ч),

V УЗЛ 7 = 169,0338 (м3/ ч),

V УЗЛ 8 = 48,0338 (м3/ ч),

V УЗЛ 9 = 48,29538 (м3/ ч),

V УЗЛ 10 = 169,0338 (м3/ ч),

V УЗЛ 11 = 48,29538 (м3/ ч),

V УЗЛ 12 = 169,0338 (м3/ ч),

V УЗЛ 13 = 48,29538 (м3/ ч),

V УЗЛ 14 = 96,59077 (м3/ ч),

Определяем расчетный расход газа на участках.

При вычислении расчетного расхода газа используют первое правило
Кирхгофа для сетей, которое можно сформулировать так: алгебраическая сумма всех потоков газа в узле равна нулю.

Минимальное значение расчетного расхода газа на участке должно быть равно половине путевого. Для обеспечения экономичности системы следует выделить главные направления, по которым транспортируется большая часть газа.

Такими направлениями будут:

0-1-2-3-7-8

0-1-2-6-7-8

0-1-2-6-9

0-1-2-6-5

0-1-4-5

0-1-4-10-11

0-1-4-10-14

0-1-2-3-12-13

0-1-2-3-12-14

На этих направлениях можно выделить участки, по которым идут транзитные потоки газа. Это участки:

1-2; 2-6; 2-3; 3-12; 1-4; 4-10.

Здесь расчетный расход определяется по правилу Кирхгофа.

На участках, где нет транзитных потоков газа:

VР = 0,5 • VПУТ (м3/ч),

VР 0-1 = 1786,929 (м3/ ч)

VР 1-2 = 1134,942 (м3/ ч)

VР 2-3 = 531,2492 (м3/ ч)

VР 1-4 = 555,3969 (м3/ ч)

VР 4-5 = 72,44308 (м3/ ч)

VР 2-6 = 458,8062 (м3/ ч)

VР 3-7 = 72,44308 (м3/ ч)

VР 5-6 = 96,59077 (м3/ ч)

VР 6-7 = 48,29538 (м3/ ч)

VР 7-8 = 48,29538 (м3/ ч)

VР 6-9 = 48,29538 (м3/ ч)

VР 4-10 = 265,6246 (м3/ ч)

VР 3-12 = 265,6246 (м3/ ч)

VР 10-14 = 48,29538 (м3/ ч)

VР 10-11 = 48,29538 (м3/ ч)

VР 12-13 = 48,29538 (м3/ ч)

VР 12-14 = 48,29538 (м3/ ч)

Определяем диаметры участков:

Для этого, используя заданный перепад давления ?P, вычисляют среднюю первоначальную удельную потерю давления на главных направлениях:

А = ?Р / ? l Р i (Па/м) где ? l Р i - сумма расчетных длин участков, входящих в данное главное направление.

По величине А и расчетному расходу газа на каждом участке по номограмме рис.11.4 [10] определяют диаметры газопровода. Действительное значение удельных потерь давления на участке определяют при выборе стандартного значения условного диаметра по той же номограмме. Действительное значение удельной потери на участке умножают на расчётную длину участка и вычисляют, таким образом, потерю давления на этом участке. Общая потеря давления на всех участках главного направления не должна превышать заданного ?Р.

Все расчеты по определению диаметров участков газопровода низкого давления сводят в таблицу.

Табл. 9.
|Номер |Расчетн.|Расчет |Средняя |Диаметр |Действит|Потеря |Давл. В|
|Участка | |длина, |потеря |Условный|. |давления| |
| |расход, |м |давления|, |удельная| |конце |
| |м3 / ч | |, |Мм | |на |участка|
| | | |Па / м | |потеря |участке,|, |
| | | | | |давления| |Па |
| | | | | |, |Па | |
| | | | | |Па/м | | |
|1 |2 |3 |4 |5 |6 |7 |8 |
|0-1 |1786,92 |22 |1,33 |325 Ч 8 |1,1 |24,2 |4975,8 |
|1-2 |1134,94 |110 |1,33 |273 Ч 7 |1 |110 |4865,8 |
|2-3 |531,25 |220 |1,33 |219 Ч 6 |0,7 |154 |4711,8 |
|3-7 |72,44 |330 |1,33 |108 Ч 4 |0,9 |197 |4414,8 |
|7-8 |48,29 |220 |1,33 |88,5 Ч 4|1,38 |303,6 |4111,2 |
|2-6 |458,81 |330 |1,33 |219 Ч 6 |0,47 |155,1 |4710,7 |
|6-7 |48,29 |220 |1,33 |88,5 Ч 4|1,38 |303,6 |4407,1 |
|Невязка в узле 7: (4414,8-4407,1) / 4414,8 • 100 % = 0,17 % |
|3-12 |265,62 |330 |1,33 |159 Ч 4 |1,1 |363 |4348,8 |
|12-14 |48,29 |220 |1,33 |88,5 Ч 4|1,3 |286 |4062,8 |
|1-4 |555,4 |330 |1,33 |219 Ч 6 |0,75 |247,5 |4728,3 |
|4-10 |265,62 |330 |1,33 |159 Ч 4 |1,1 |363 |4365,3 |
|10-14 |48,29 |220 |1,33 |88,5 Ч 4|1,38 |303,6 |4061,7 |
|Невязка в узле 14: (4062,8-4061,7)/4062,8 • 100 % = 0,03 % |
|5-6 |96,59 |440 |1,33 |114 Ч 4 |1,2 |528 |4182,7 |
|4-5 |72,44 |330 |1,76 |89 Ч 3 |1,8 |594 |4117,8 |
|Невязка в узле 5: (4182,7-4117,8)/4182,7 • 100 % = 1,55 % |
|6-9 |48,29 |220 |1,76 |88,5 Ч 4|1,38 |303,6 |4407,1 |
|10-11 |48,29 |220 |1,33 |88,5 Ч 4|1,38 |303,6 |4061,7 |
|12-13 |48,29 |220 |1,33 |88,5 Ч 4|1,38 |303,6 |4045,2 |

Первым критерием правильности расчёта является невязка давлений в узловых точках, которая не должна быть более 10%. Давление в узловых точках определяется путём вычитания потерь давления на участках из начального давления от ГРП при движении потока газа до рассматриваемого узла по кратчайшему расстоянию. Разность давлений образуется вследствие различных направлений подхода газа к узлу.

Вторым критерием является оценка потерь давления от ГРП до самых удалённых потребителей. Эта потеря не должна быть более расчётного перепада давления, равного 1200 Па и отличатся от него не более чем на 10%.

Условия правильности расчета соблюдаются и на этом расчет многокольцевых сетей низкого давления заканчивается.

12.3 Гидравлический расчет тупиковых газопроводов низкого давления.

Тупиковые газопроводы низкого давления прокладываются внутри жилых домов, внутри производственных цехов и по территории небольших населенных пунктов сельского типа.

Источником питания подобных газопроводов являются ГРП низкого давления.

Гидравлический расчет тупиковых газопроводов производят по номограмме рис. 11.4. из [10].Особенностью расчёта здесь является то, что при определении потерь давления на вертикальных участках надо учитывать дополнительное избыточное давление из-за разности плотностей газа и воздуха, то есть

?РД = ± h • (?В - ?Г) • g, где h - разность геометрических отметок в конце и начале газопровода, м;

?В, ?Г - плотности воздуха и газа при нормальных условиях, кг/м3; g - ускорение свободного падения, м/с2.

Для природного газа, который легче воздуха, при движении его по газопроводу вверх значение ?Р будет отрицательным, а при движении вниз положительным.

Учет местных сопротивлений можно производить путем введения надбавок на трение l Р = l Г * (1 + а/100), (м), где а - процентная надбавка.

Рекомендуются следующие процентные надбавки: на газопроводах от ввода в здание до стояка - 25%; на стояках - 20%; на внутри квартирной разводке: при длине 1-2 м. - 450%, при длине 3-4 м. - 200%, при длине 5-7 м. - 120%, при длине 8-12 м. - 50%.

Перепад давления ?Р в тупиковых газопроводах низкого давления определяется начальным давлением после ГРП или ГРУ, которое равно 4-5 кПа, и давлением необходимым для работы газогорелочных установок или газовых приборов. Перепад давления ?Р, согласно рекомендациям таблицы 11.10. [10] принимаем равным 350 Па.

1. Создаём расчётную схему газопровода: рис. 4.

2. Назначаем магистральное направление.

3. Определяем для каждого участка магистрального направления расчётный расход газа по формуле,

VР = VЧАС • КОД, (м3/ч), где - максимальный часовой расход газа соответствующего потребителя, м3/ч,

VЧАС = 1,17 (м3/ч),

КОД - коэффициент одновременности, учитывающий вероятность одновременной работы всех потребителей.

4. Определяем расчётную длину участков магистрального направления (l Р i) по формуле, l Р = l Г • (1 + а/100), (м), где а - процентная надбавка.

Рекомендуются следующие процентные надбавки: на газопроводах от ввода в здание до стояка - 25%; на стояках - 20%; на внутри квартирной разводке: при длине 1-2 м. - 450%, при длине 3-4 м. - 200%, при длине 5-7 м. - 120%, при длине 8-12 м. - 50%.

5. Вычисляем расчётную длину магистрального направления в метрах, суммируя все расчётные длины его участков (? l Р i).

6. Определяем удельный перепад давления на магистральном направлении

А = ?Р / ? l Р i , (Па/м).

А = 8,1871345 (Па/м).

7. Используя диаграмму рис. 11.4. [10], определяем диаметры участков газопровода магистрального направления и уточняют удельный перепад давления на каждом участке в соответствии с выбранным стандартным диаметром.

8. Определяем действительный перепад давления газа на каждом участке, умножая удельный перепад давления на расчётную длину участка.

9. Суммируем все потери на отдельных участках магистрального направления.

10. Определяем дополнительное избыточное давление в газопроводе,

?РД = ± h • (?В - ?Г) • g,

?РД = 110,26538 где h - разность геометрических отметок в конце и начале газопровода, м;

?В, ?Г - плотности воздуха и газа при нормальных условиях, кг/м3; g - ускорение свободного падения, м/с2. h = 20,7 (м),

11. Вычисляем алгебраическую сумму потерь давления а магистрали и дополнительного избыточного давления и сравниваем её с допустимой потерей давления в газопроводе ?Р.

Критерием правильности расчёта будет условие

(??Рi ± ?РД + ?РПРИБ) ? ?Р, где ??Рi - сумма потерь давлений на всех участках магистрали, Па;

?РД - дополнительное избыточное давление в газопроводе, Па;

?РПРИБ - потеря давления газа в газоиспользующем приборе, Па;

?Р - заданный перепад давления, Па.

(??Рi ± ?РД + ?РПРИБ) = 338,24462 Невязка составляет 3,36%.

Отклонение (??Рi ± ?РД + ?РПРИБ) от ?Р должно быть не больше 10%.

Расчёт сделан верно.

Все расчёты по определению диаметров газопровода сводим в таблицу.

Табл. 10.
|NO |Расход|Коэфф.|Расчёт|Длина |Надб. |Расчёт|Усл. |Потери давления|
|участк| | |. |участк|на |. |диам. | |
|а |газа, |одно- |расход|а |мес. |длина,|мм |Па |
| |м3/ч |врем. |, |м |сопр. | | | |
| | | |м3/ч | | |м | | |
| | | | | | | | |на 1 м|на уч-ке|
|1 |2 |3 |4 |5 |6 |7 |8 |9 |10 |
|10-15 |1,17 |0,65 |1,17 |6 |120 |13,2 |21,3Ч2,|2,2 |29,04 |
| | | | | | | |8 | | |
|9-10 |0,34 |0,45 |1,521 |3 |20 |3,6 |21,3Ч2,|4 |14,4 |
| | | | | | | |8 | | |
|8-9 |3,51 |0,35 |1,5795|3 |20 |3,6 |21,3Ч2,|4,2 |15,12 |
| | | | | | | |8 | | |
|7-8 |4,68 |0,29 |1,638 |3 |20 |3,6 |21,3Ч2,|4,5 |16,2 |
| | | | | | | |8 | | |
|6-7 |5,85 |0,26 |1,6965|7 |25 |8,75 |21,3Ч2,|5 |43,75 |
| | | | | | | |8 | | |
|1-6 |11,7 |0,255 |3,042 |4 |25 |5 |21,3Ч2,|19 |95 |
| | | | | | | |8 | | |
|0-1 |17,55 | |4,4752|4 |25 |5 |21,3Ч2,|35 |175 |
| | | |5 | | | |8 | | |
| | | | | | |?42,75| | |?388,51 |

Окончательно принимаем следующие диаметры газопровода на участках магистрального направления:

10-15: 21,3Ч2,8 мм

9-10: 21,3Ч2,8 мм

8-9: 21,3Ч2,8 мм

7-8: 21,3Ч2,8 мм

6-7: 21,3Ч2,8 мм

1-6: 21,3Ч2,8 мм

0-1: 21,3Ч2,8 мм

Два других стояка несут аналогичную нагрузку и по конструкции идентичны расчетному. Поэтому диаметры газопровода на этих стояках принимаем такими же, как и у рассчитанного.

Исключение составят только участки подводящего газопровода 1-2, 6-11.
Определяем диаметры газопроводов на этих участках:

1. Расчётные длины ответвлений: 0-1-6-11-12-13-14, 0-1-2-3-4-5 соответственно составят LP 6-11 = 40,25, LP 1-2 = 41,5 (м).

2. Расчетные расходы газа :

Участок 1-2 V Р = 1,6965 (м3/ ч)

Участок 6-11 V Р = 1,6965 (м3/ ч).

3.Средняя удельная потеря

А6-11 = 8,6956522, А1-2 = 8,4337349.

4. Диаметры участков по номограмме рис.11.4 из [10]:

Участок 2-16 = 21,3Ч2,8,

Участок 2-3 = 21,3Ч2,8.

На этом расчет тупикового газопровода низкого давления заканчивается.

13. Библиографический список.

СНиП 2.04.08-87 Газоснабжение. Госстрой СССР.-М: ЦИТП Госстроя СССР, 1988.-
64с.
СНиП 2.04.05-91 Строительная климатология и геофизика. Госстрой СССР.-М:
Стройиздат, 1983. -136 с.
Ионин А.А. Газоснабжение. -М: Стройиздат, 1989. -439 с.
Филатов Ю.П., Клоков А.А., Марухин А.И. Системы газоснабжения: Учебное пособие.-Н. Новгород, 1993. -97 с.
ГОСТ 21.609-83.
ГОСТ 21.610-85.
Правила безопасности в газовом хозяйстве. Госпроматомнадзор СССР. -М:
Недра, 1991. - 141 с.
Стаскевич Н.Л., Северинец Г.Н., Вигдорчик Д.Я. Справочник по газоснабжению и использованию газа. -Л: Недра, 1990. -762 с.
Энергетическое топливо СССР. Справочник. -М: Энергоатомиздат, 1991. -184 с.
Курилов В.К. Расчет систем газоснабжения городов и населенных пунктов:
Учебное пособие. -Редакционно-издательский отдел Ивановской архитектурно- строительной академии, 1998. -86 с.
-----------------------

L=0,07км

(18)

L=0,66км

(15)

L=0,07км

(14)

L=0,37км

(16)

L=1,68км

(17)

16

17

0

15

14

(35)
L=0,05

(34)
L=0,06

(33)
L=0,08

(32)

L=0,08

(1)

L=0,2км

V14

19,525

V15
26,78

V16
85,235

V17
433,01

V1
26,78

(31)

L=0,17

V13

3,543

(19)

L=0,12

13

1

(13)

L=0,43км

(2)

L=0,21км

V12

85,235

(30)

L=0,07

12

V2
1883,52

(12)
L=0,23км

(20)

L=0,11

2

V11

15208,94

(3)

L=0,14км

(29)

L=0,06

11

(11)
L=0,04км

V3
3,543

(21)

L=0,08

3

V10

26,78

(28)

L=0,15

10

(4)

L=0,41км

(10)
L=0,11км

V4
1131,22

(22)

L=0,16

4

V9

1883,52

(27)

L=0,15

9

V5
26,78

V6
19,525

V7
433,01

V8
3,543

(26)

L=0,1

(25)

L=0,07

(24)

L=0,12

(23)

L=0,04

8

7

6

5

(9)

L=0,2км

(8)

L=0,11км

(7)

L=0,16км

(6)

L=0,14км

(5)

L=0,83км

рис.2. Расчётная схема кольцевого газопровода высокого давления.

рис. 3. Расчётная схема многокольцевого газопровода низкого давления.

4

10

2

4

9

8

6

7

5

1

0

3

ГРП

12

13

11

+20

+20

+0,5

-0,7

+3,5

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

рис. 4. Расчётная схема тупикового газопровода низкого давления.

5

4

3

2

10

9

8

7

14

13

12

11

6

1

15

6 м

6 м

6 м

3 м

3 м

3 м

3 м

3 м

3 м

3 м

3 м

3 м

10 м

7 м

5 м

4 м

4 м

0


Страницы: 1, 2, 3


реферат скачать
НОВОСТИ реферат скачать
реферат скачать
ВХОД реферат скачать
Логин:
Пароль:
регистрация
забыли пароль?

реферат скачать    
реферат скачать
ТЕГИ реферат скачать

Рефераты бесплатно, курсовые, дипломы, научные работы, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.