реферат скачать
 
Главная | Карта сайта
реферат скачать
РАЗДЕЛЫ

реферат скачать
ПАРТНЕРЫ

реферат скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат скачать
ПОИСК
Введите фамилию автора:


Общая биология

первую аминокислоту синтезируемого полипептида. Затем второй

антикодон присоединяет комплекс аминокислота-т-РНК, содержащий

антикодон комплиментарный этому кодону.

Функция рибосомы заключается в том, чтобы удерживать в нужном

положении и-РНК, т-РНК и белковые факторы, участвующие в процессе

трансляции, до тех пор пока между соседними аминокислотами не

образуется пептидная связь.

Как только новая аминокислота присоединилась к растущей

полипептидной цепи, рибосома перемещается по нити и-РНК с тем, чтобы

поставить на надлежащие место следующий кодон. Молекула т-РНК, которая

была связана перед этим с полипептидной цепью, теперь освободившись от

аминокислоты, покидает рибосому и возвращается в основное вещество

цитоплазмы, чтобы образовать новый комплекс аминокислота-т-РНК. Такое

последовательное «считывание» рибосомой заключенного в и-РНК «текста»

продолжается до тех пор, пока процесс не доходит до одного из стоп-

кодонов. Такими кодонами являются триплеты УАА, УАГ или УГА. На этом

этапе полипептидная цепь, первичная структура которой была

закодирована на участке ДНК – гене, покидает рибосому и трансляция

завершена.

После того как полипептидные цепи отделились от рибосомы, они

могут приобретать свойственную им вторичную, третичную или

четвертичную структуры.

В заключении следует отметить, что весь процесс синтеза белка в

клетке идет с участием ферментов. Они обеспечивают синтез и-РНК,

«захват» аминокислот т-РНК, соединение аминокислот в полипептидную

цепь, формирование вторичной, третичной, четвертичной структуры.

Именно из-за участия ферментов синтез белка называют биосинтезом. Для

обеспечения всех стадий синтеза белка , используется энергия

высвобождающаяся при расщеплении АТФ.

Регуляция транскрипции и трансляции (синтеза белков) у бактерий и

высших организмов.

Каждая клетка содержит полный набор молекул ДНК. С информацией о

строении всех полипептидных цепей, какие только могут быть

синтезированы в данном организме. Однако в определенной клетке

реализуется только часть этой информации, Как же осуществляется

регуляция этого процесса?

В настоящее время выяснены только отдельные механизмы синтеза

белков. Большинство белков-ферментов образуется только в присутствии

веществ-субстратов, на которые они действуют. Строение белка-фермента

закодировано в соответствующем гене (структурный ген). Рядом со

структурным геном находится другой ген-оператор. Кроме того в клетке

присутствует особое вещество – репрессор, способное взаимодействовать

как с геном-оператором, так и с веществом-субстратом. Синтез

репрессора регулируется геном-регулятором.

Присоединившись к гену-оператору, репрессор препятствует

нормальному функционированию соседнего с ним структурного гена.

Однако, соединившись с субстратом, репрессор утрачивает способность

соединяться с геном-оператором и и препятствовать синтезу и-РНК.

Образованием самих репрессоров управляют особые гены-регуляторы,

функционирование которых управляется репрессорами второго порядка. Вот

почему не все , а только специфические клетки реагируют на данный

субстрат синтезом соответствующего фермента.

На этом, однако, иерархия репрессорных механизмов не прерывается

имеются репрессоры и более высоких порядков, что говорит об

удивительной сложности связанного с запуском гена в клетке.

Считывание заключенного в и-РНК «текста» прекращается когда этот

процесс доходит до стоп-кодона.

Автотрофные (аутотрофные) и гетеротрофные организмы.

Автотрофные организмы синтезируют из неорганических веществ

органические с использованием энергии Солнца или энергии,

освобождающейся при химических реакциях. Первые называются

гелиотрофами, вторые – хемотрофами. К автотрофным организмам относятся

растения и некоторые бактерии.

Гетеротрофные организмы используют вещества производимые другими

видами. К гетеротрофам относятся все животные, паразитические

растения, большинство бактерий, грибы.

Различают два типа гетеротрофного питания: сапрофитное – питание

органическими веществами, образующимися при разложении тел организмов;

паразитное – питание органическими вест вами вырабатываемыми живыми

организмами.

В природе встречается и смешанный тип питания, который характерен

для некоторых бактерий, водорослей и простейших. Такие организмы

органические вещества своего тела могут синтезировать из готовых

органических веществ и из неорганических.

Объем веществ в клетке.

Объем веществ это процесс последовательного потребления,

превращения, использования , накопления потери веществ и энергии

позволяющий клетке самосохраняться, расти, развиваться и размножаться.

Обмен веществ состоит из непрерывно протекающих процессов ассимиляции

и диссимиляции.

Пластический обмен в клетке.

Пластический обмен в клетке это совокупность реакций ассимиляции,

т. е. превращение определенных веществ внутри клетки с момента их

поступления до образования конечных продуктов – белков, глюкозы, жиров

и пр. Для каждой группы живых организмов характерен особый,

генетически закрепленный тип пластического обмена.

Пластический обмен у животных. Животные являются гетеротрофными

организмами, т. е. они питаются пищей содержащей готовые органические

вещества. В кишечном тракте или кишечной полости они расщепляются:

белки до аминокислот, углеводы до моноз, жиры до жирных кислот и

глицерина. Продукты расщепления проникают в кровь и непосредственно в

клетки тела. В первом случае продукты расщепления опять таки

оказываются в клетках организма. В клетках происходит синтез веществ

характерный уже для данной клетки, т. е. формируется специфический

набор веществ. Из реакций пластического обмена простейшими являются

реакции обеспечивающие синтез белков. Синтез белка происходит на

рибосомах, согласно информации о структуре белка содержащийся в ДНК,

из аминокислот поступивших в клетку. Синтез ди-, полисахаридов идет из

моноз в аппарате Гольджи. Из глицерина и жирных кислот синтезируются

жиры. Все реакции синтеза идут с участием ферментов и нуждаются в

затрате энергии, энергию для реакций ассимиляции дает АТФ.

Пластический обмен в клетках растений имеет много общего с

пластическим обменом в клетках животных, но обладает определенной

специфичной связанной со способом питания растений. Растения это

аутотрофные организмы. Растительные клетки, содержащие хлоропласты,

способны синтезировать органические вещества из простых неорганических

соединений с использованием энергии света. Этот процесс известный под

названием фотосинтеза позволяет растениям с участием хлорофила из

шести молекул углекислого газа и шести молекул воды получать одну

молекулу глюкозы и шесть молекул кислорода. В дальнейшем

преобразование глюкозы идет по известному нам пути.

Метаболиты возникающие у растений в процессе обмена веществ дают

начало составным элементам белков – аминокислотам и жиров – глицерину

и жирным кислотам. Синтез белка у растений идет как и животных на

рибосомах, а синтез жиров на цитоплазме. Все реакции пластического

обмена у растений идут с участием ферментов и АТФ. В результате

пластического обмена образуются вещества обеспечивающие рост и

развитие клетки.

Энергетический обмен в клетке и его сущность.

Совокупность реакций диссимиляции, сопровождающихся выделением

энергии, называется энергетическим обменом. Наиболее энергетическими

веществами являются белки, жиры и углеводы.

Энергетический обмен начинается с изготовительного этапа, когда

белки распадаются на аминокислоты, жиры на глицерин и жирные кислоты,

полисахариды на моносахариды. Образующаяся энергия на этом этапе

незначительна и рассеивается в виде тепла. Из образовавшихся веществ

основным поставщиком является энергии глюкоза. Расщепление глюкозы в

клетке, в результате которого происходит синтез АТФ , происходит в две

стадии. Все начинается с бескислородного расщепления – гликолиза.

Вторую стадию называют кислородным расщеплением.

Гликолизом называют последовательность реакций, в результате

которых одна молекула глюкозы распадается на две молекулы

пировиноградной кислоты. Эти реакции протекают в основном веществе

цитоплазмы и не требуют присутствия кислорода. Процесс происходит в

два этапа. На первом этапе происходит превращение глюкозы в фруктозо

–1, 6,-бифосфат, а на втором - расщепление последнего на два

трехуглеродного сахара, которые позже превращаются в пировиноградную

кислоту. При этом на первом этапе в реакциях фосфорилирования

потребляются две молекулы АТФ. Таким образом чистый выход АТФ при

гликолизе составляет две молекулы АТФ. Кроме того, при гликолизе

освобождается четыре атома водорода.. Суммарную реакцию гликолиза

можно записать так:

CHO 2CHO + 4H + 2 АТФ

В дальнейшем при наличии кислорода пировиноградная кислота

переходит в митохондрии для полного окисления до СО и воды ( аэробное

дыхание ). Если кислорода нет, то она праевращается либо в этанол,

либо в молочную кислоту (анаэробное дыхание).

Кислородное расщепление (аэробное дыхание) происходит в

митохондриях, где под действием ферментов пировиноградная кислота

вступает в реакцию с водой и полностью распадается с образованием

углекислого газа и атомов водорода. Углекислый газ удаляется из

клетки. Атомы водорода попадают в мембрану митохондрий, где в

результате ферментативного процесса окисляются. Электроны и катионы

водорода с помощью молекул-переносчиков Транспортируются на

противоположные стороны мембраны: электроны на внутреннюю, протоны на

наружную. Электроны соединяются с кислородом. В результате этих

перестроек мембрана снаружи заряжается положительно, а изнутри

отрицательно. При достижении критического уровня разности потенциалов

на мембране положительно заряженные частицы проталкиваются через канал

в молекуле фермента встроенного в мембрану на внутреннюю сторону

мембраны, где соединяясь с кислородом образуют воду.

Процесс кислородного дыхания можно представить в виде следующего

уровня:

2СНО + 6О + 36АДФ + 36НРО 36АТФ + 6СО + 42НО.

А суммарное уравнение гликолиза и кислородного процесса выглядит

так:

СНО + 6О + 38АДФ + 38НРО 38АТФ + 6СО + 44НО

Таким образом, расщепление в клетке одной молекулы глюкозы до

углекислого газа и воды обеспечивает синтез 38 молекул АТФ.

Значит в процессе энергетического обмена образуется АТФ –

универсальный источник энергии в клетке.

Хемосинтез.

Каждый организм для поддержания жизни и осуществления процессов,

совокупность которых составляет обмен веществ, нуждается в постоянном

притоке энергии.

Процесс образования некоторыми микроорганизмами органических

веществ, из углекислого газа за счет энергии, получаемой при окислении

неорганических соединений (аммиака, водорода, соединений серы,

закисного железа) называется хемосинтезом.

В зависимости от минеральных соединений, в результате окисления

которых микроорганизмы, а это в основном бактерии, способны получать

энергию хемоавтотрофы делятся на нитрифицирующие, водородные,

серобактерии, железобактерии.

Нитрофицирующие бактерии окисляют аммиак до азотной кислоты. Этот

процесс идет в две фазы. Сначала идет окисление аммиака до азотной

кислоты:

2NH + 3O = 2HNO + 2HO + 660 кДж.

Затем азотистая кислота превращается в азотную:

2HNO + O = 2HNO + 158 кДж.

В сумме выделяется 818 кДж , которые используются для утилизации

углекислого газа.

У железобактерий окисление двухвалентного железа происходит

согласно уравнению

Поскольку реакция сопровождается малым выходом энергии (46,2*10

Дж/г окисленного железа), то для поддержания роста бактериям

приходится окислять весма большое количество железа.

При окислении одной молекулы сероводорода выделяется – 17,2*10

Дж., одной молекулы серы – 49,8*10 Дж., а одной молекулы - 88,6*10

Дж.

Процесс хемосинтеза был открыт в 1887 году С.Н. Виноградским. Это

открытие не только пролило свет на особенности обмена веществ у

бактерий, но и позволило определить значимость бактерий –

хемоавтотрофоф. Особенно это касается азотфиксирующих бактерий,

которые недоступный растениям азот превращают в аммиак, чем

способствуют повышению плодородия почвы. Стал понятен и процесс

участия бактерий в круговороте веществ в природе.

Размножение организмов.

Формы размножения организмов.

Способность размножаться, т.е. производить новое поколение того же

вида, одна из основных особенностей живых организмов.

Существует два основных типа размножения – бесполое и половое.

Бесполое размножение.

При бесполом размножении потомки происходят от одного организма.

Идентичное потомство происходящее от оной родительской особи,

называется клоном. Члены одного клона могут быть генетически

различными только в случае возникновения случайных мутаций. Бесполое

размножение не встречается только у высших животных. Однако известно,

что клонирование было успешно проведено для некоторых видов и высших

животных – лягушек, овец, коров.

В научной литературе выделяют несколько форм бесполого

размножения.

1. Деление. Делением размножаются одноклеточные организмы: каждая

особь делиться на две или большее число дочерних клеток,

идентичной родительской клетке. Так размножаются бактерии,

амеба, эвглена, хламидомонада и др.

2. Образование спор. Спора – это одноклеточная репродуктивная

структура. Образование спор характерно для всех растений и

грибов.

3. Почкование. Почкованием называют форму бесполого размножения,

при которой новая особь образуется в виде выроста на теле

родительской особи, а затем отделяется от не и превращается в

самостоятельный организм. Почкование встречается у

кишечнополостных и у дрожжей.

4. Размножение фрагментами. Фрагментацией называют разделение

особи на несколько частей, которая растет и образует новую

особь. Так размножается спирогира, лишайники и некоторые виды

червей.

5. Вегетативное размножение. Это форма бесполого размножения, при

которой от растения отделяется относительно большая, обычно

дифференцированная, часть и развивается в самостоятельное

растение. Это размножение луковицами, клубнями, корневищами и

пр. Вегетативное размножение подробно описано в разделе

«Ботаника». (Ботаника. Пособие для поступающих в вузы.

Составитель М. А. Галкин).

Половое размножение.

При половом размножении потомство получается в результате полового

размножения – слияния генетического материала гаплоидных ядер. Ядра

находятся в специализированных половых клетках – гаметах. Гаметы

гаплоидны – они содержат один набор хромосом, полученный в результате

мейоза; они служат связующим звеном между данным поколением и

следующим. Гаметы могут быть одинаковыми по размерам и форме, с

органами передвижения – жгутиками или без них, но чаще мужские гаметы

отличаются от женских. Женские гаметы – яйцеклетки обычно крупнее

мужских, имеют округлую форму и обычно не имеют локомоторных органов.

У яйцеклеток четко выделяются также элементы протопласта как и ядро. В

основном веществе цитоплазмы накапливается большое количество

питательных веществ. Мужские гаметы имеют значительно упрощенное

строение. Они бывают подвижными, т.е. имеют жгутики. Это

сперматозоиды. Бывают они и без жгутиков это спермии.

Половое размножение имеет громадное биологическое значение. Во

время мейоза, когда образуются гаметы, В результате случайного

расхождения хромосом и обмена генетическим материалом между

гомологичными хромосомами возникают новые комбинации генов, попавших в

одну гамету, что повышает генетическое разнообразие.

При оплодотворении гаметы сливаются, образуя диплоидную зиготу –

клетку содержащую по одному хромосомному набору от каждой гаметы. Это

объединение двух наборов хромосом представляет собой генетическую

основу внутривидовой изменчивости.

Партеногенез.

Одной из форм полового размножения является партеногенез – при

котором развитие зародыша происходит из неоплодотворенной яйцеклетки.

Партеногенез распространен среди насекомых (тли, пчелы), разнообразных

коловраток, простейших, как исключение встречается у некоторых ящериц.

Существует два типа партеногенеза – гаплоидный и диплоидный. У

муравьев в результате гаплоидного партеногенеза в в пределах

сообщества, возникают различные касты организмов – солдаты, уборщики и

пр. У пчел из неоплодотворенной яйцеклетки появляются трутни, у

которых сперматозоиды образуются митозом. У тлей происходит диплоидный

партеногенез. У них в период образования клеток в анафазе – не

расходяться гомологичные хромосомы – и сама яйцеклетка оказывается

диплоидной при трех «стерильных» полярных тельцах. У растений

партеногенез довольно типичное явление. Здесь он носит название

апомиксиса. В результате «стимуляции» в яйцеклетке происходит удвоение

хромосом. Из диплоидной клетки развивается нормальный зародыш.

Систематика растений.

Систематика изучает разнообразие растений. Объектом изучения

систематики являются систематические категории. Основными

систематическими категориями являются: вид, род, семейство, класс,

отдел, царство.

Вид – это совокупность популяций особей, способных в природных

условиях скрещиваться и образовывать плодовитое потомство. Род – это

совокупность близкородственных видов. Семейство – это совокупность

близкородственных родов. Класс объединяет близкородственные семейства,

отдел – близкородственные классы. В качестве царства выступают в

данном случае растения.

Научные названия всех систематических категорий приводятся на

латинском языке. Названия систематических категорий выше вида состоят

из одного слова. Для видов с 1753 года благодаря К. Линнею приняты

бинарные названия. Первое слово обозначает видовую принадлежность,

второе является видовым эпитетом. Название систематических категорий

на русском языке редко являются переводом с латинского, чаше это

оригинальные названия родившиеся в народе.

Образование половых клеток у человека. Строение половых клеток

человека. Оплодотворение у человека. Биологическое значение

оплодотворения.

Сперматозоиды – мужские половые клетки образуются в результате

ряда последовательных клеточных делений – сперматогенеза, за которым

следует сложный процесс дифферинцировки, называемый спермиогенезом.

Сначала деление клеток зачатного эпителия, который находится в

семенных канальцах, дает начало сперматогониям, которые увеличиваются

в размерах и становятся сперматоцитами первого порядка. Они в

результате первого деления мейоза образуют диплоидные сперматоциты

второго порядка, после второго деления мейоза они дают начало

сперматозоидам. Взрослый сперматозоид состоит из головки,

промежуточного отдела и жгутика (хвостика). Головка состоит из

акросомы и ядра окруженных мембраной. Шейка имеет центриоль. В

промежуточном отделе расположены митохондрии.

Образование яйцеклетки у человека – оогенез протекает в несколько

стадий. На первом этапе в результате метотического деления из клеток

зачаточного эпителия образуются оогонии. Оогонии делятся по типу

митоза и дают начало ооцитам первого порядка. Из ооцитов первого

порядка в результате митотического деления образуются яйцеклетки и

полярные тельца.

Оплодотворение у человека внутреннее. В результате проникновения

сперматозоида в яйцеклетку происходит слияние ядер половых клеток.

Образуется зигота.

В результате оплодотворения восстанавливается диплоидный набор

хромосом, образуется новый организм, несущий в себе признаки матери и

отца. При образовании половых клеток происходит перекомбинация генов,

поэтому новый организм соединяет в себе лучшие признаки родителей.

Индивидуальное развитие организма – онтогенез.

Онтогенез это период развития организма от первого деления зиготы

до естественной смерти.

Развитие зародыша (на примере животных).

Независимо от того, где происходит развитие зародыша, начало его

развития связано с первым митотическим делением. Следующий за делением

ядра цитокинез приводит к образованию двух диплоидных дочерних клеток,

которые получили название бластомеров. Бластомеры продолжают делиться

по типу митоза причем продольное деление чередуется с поперечным.

Деления бластомер называют дроблением, т. к. в период этого процесса

Страницы: 1, 2, 3, 4, 5


реферат скачать
НОВОСТИ реферат скачать
реферат скачать
ВХОД реферат скачать
Логин:
Пароль:
регистрация
забыли пароль?

реферат скачать    
реферат скачать
ТЕГИ реферат скачать

Рефераты бесплатно, курсовые, дипломы, научные работы, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.