реферат скачать
 
Главная | Карта сайта
реферат скачать
РАЗДЕЛЫ

реферат скачать
ПАРТНЕРЫ

реферат скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат скачать
ПОИСК
Введите фамилию автора:


Биологическое окисление

наибольшей тенденцией их отдавать. Например, смесь НАДH и НАД+ (50:50)

имеет редокс-потенциал -320 мВ, что указывает на сильно выраженную

способность НАДH отдавать электроны, тогда как редокс-потенциал смеси

равных количеств Н2О и ЅО2 составляет +820 мВ, что означает сильную

тенденцию 02 к принятию электронов.

Резкий перепад имеет место в пределах каждого из трех главных

дыхательных комлексов. Разность потенциалов между любыми_двумя

переносчиками электронов прямо пропорциональна энергии, высвобождаемой

при переходе электрона от одного переносчика к другому. Каждый комплекс

действует как энергопреобразующее устройство, направляя эту свободную

энергию на перемещение протонов через мембрану, что приводит к созданию

электрохимического протонного градиента по мере прохождения электронов по

цепи.

Для работы энергопреобразующего механизма, лежащего в основе

окислительного фосфорилирования, нужно, чтобы каждый ферментный комплекс

дыхательной цепи был ориентирован во внутренней митохондриальной мембране

определенным образом – так, чтобы все протоны перемещались в одном

направлении, т. е. из матрикса наружу. Такая векторная организация

мембранных белков была продемонстрирована с помощью специальных зондов,

не проходящих сквозь мембрану, которыми метили комплекс только с какой-

нибудь одной стороны мембраны. Специфическая ориентация в бислоe

свойственна всем мембранным белкам и очень важна для их функции.

Механизмы перекачивания протонов компонентами дыхательной цепи.

В процессе окислительного фосфорилирования при окислении одной молекулы

НАДН (т.е. при прохождений двух электронов через все три ферментных

комплекса) образуется не более трех молекул АТФ. Если предположить, что

обратное прохождение трех протонов через АТФ-синтетазу обеспечивает синтез

одной молекулы АТФ, можно будет заключить, что в среднем перенос одного

электрона каждым комплексом сопровождается перемещением полутора протонов

(иными словами, при транспорте одного электрона некоторые комплексы

перекачивают один протон, а другие - два протона). Вероятно, у разных

компонентов дыхательной цепи существуют разные механизмы сопряжения

транспорта электронов с перемещением протонов. Аллостерические изменения

конформации белковой молекулы, связанные с транспортом электронов, могут в

принципе сопровождаться «перекачиванием» протонов, подобно тому как

перемещаются протоны при обращении действия АТФ-синтетазы. При переносе

каждого электрона хинон захватывает из водной среды протон, который затем

отдает при высвобождении электрона. Поскольку убихинон свободно

передвигается в липидном бислое, он может принимать электроны вблизи

внутренней поверхности мембраны и передавать их на комплекс b-с1 около ее

наружной поверхности, перемещая при этом через бислой по одному протону на

каждый перенесенный электрон. С помощью более сложных моделей можно

объяснить и перемещение комплексом b-c1 двух протонов на каждый

электрон, предположив, что убихинон повторно проходит через комплекс b-c1

в определенном направлении.

В отличие от этого молекулы, передающие электроны цитохромоксидазному

комплексу, по-видимому, не переносят протонов, и в этом случае транспорт

электронов, вероятно, связан с определенным аллостерическим изменением

конформации белковых молекул, в результате которого какая-то часть

белкового комплекса сама переносит протоны.

Действие разобщителей.

С 40-х годов известен ряд липофильных слабых кислот, способных

действовать как разобщающие агенты, т.е. нарушать сопряжение транспорта

электронов с синтезом АТФ. При добавлении к клеткам этих низкомолекулярных

органических соединений митохондрии прекращают синтез АТФ, продолжая при

этом поглощать кислород. В присутствии разобщающего агента, скорость

транспорта электронов остается высокой, но протонный градиент не создается.

Это простое объяснение этого эффекта: разобщающие агенты (например,

динитрофенол, тироксин) действуют как переносчики Н+ (Н+-ионофоры) и

открывают дополнительный путь - уже не через АТФ-синтетазу – для потока Н+

через внутреннюю митохондриальную мембрану.(13, 2000(

Дыхательный контроль.

Когда к клеткам добавляют разобщающий агент, например динитрофенол,

поглощение кислорода митохондриями значительно возрастает, так как скорость

переноса электронов увеличивается. Такое ускорение связано с

существованием дыхательного контроля. Полагают, что этот контроль основан

на прямом инги6ирующем влиянии электрохимического протонного градиента на

транспорт электронов. Когда в присутствии разобщителя

электрохимический градиент исчезает, не контролируемый более транспорт

электронов достигает максимальной скорости. Возрастание градиента

притормаживает дыхательную цепь, и транспорт электронов замедляется. Более

того, если в эксперименте искусственно создать на внутренней

мембране необычно высокий электрохимический градиент, то нормальный

транспорт электронов прекратится совсем, а на некоторых участках

дыхательной цепи можно будет обнаружить обратный поток электронов. Это

позволяет предполагать, что дыхательный контроль отражает простой баланс

между изменением свободной энергии при перемещении протонов, сопряженного с

транспортом электронов, и изменением свободной энергии при самом транспорте

электронов.Величина электрохимического градиента влияет как на скорость,

так и на направление переноса электронов, так же как и на направление

действия АТФ-синтетазы.

Дыхательный контроль - это лишь часть сложной системы взаимосвязанных

регуляторных механизмов с обратными связями, координирующей скорости

гликолиза, расщепления жирных кислот, реакций цикла лимонной кислоты и

транспорта электронов. Скорости всех этих процессов зависят от отношения

АТФ:AДФ - они возрастают, когда это отношением уменьшается в результате

усиленного использования АТФ. Например, АТФ-синтетаза внутренней

митохондриальной мембраны работает быстрее, когда концентрации ее

субстратов, т. е. .AДФ и Фн, увеличиваются. Чем выше скорость этой реакции,

тем больше протонов перетекает в матрикс, быстрее рассеивая тем самым

электрохимический градиент; а уменьшение градиента в свою очередь приводит

к ускорению транспорта электронов.[1,1994]

Митохондрии бурой жировой ткани – генераторы тепла.

Всем позвоночным в молодом возрасте для образования тепла, в дополнение к

механизму мышечного тремора, необходимо термогенное устройство. Такого рода

устройство особенно важно для животных, впадающих в зимнюю спячку. Мышцы в

состоянии тремора сокращаются и при отсутствии нагрузки, используя

сократительные белки для гидролиза АТФ обычным для мышечных клеток образом

и освобождая в виде тепла всю энергию, потенциально доступную при гидролизе

АТФ. Необходимость особого термогенного устройства определяется прочно

сопряженным окислительным фосфорилированием нормальных митохондрий. Если бы

этот процесс мог быть разобщен, как это бывает в присутствии динитрофенола,

он мог бы служить в качестве адекватного приспособления, производящего

тепло; именно так это происходит в митохондриях бурого жира. Хотя эти

митохондрий обладают обычной обратимой АТФазой, в них имеется также

трансмембранная протонная транслоказа, посредством которой протоны могут

возвращаться в матрикс и электрически шунтировать работу АТФазы. Если этот

процесс достаточен для того, чтобы поддерживать окислительно-

восстановительный потенциал водорода значительно ниже 200 мВ, синтез АТФ

становится невозможным и окислительный процесс протекает свободно, в

результате чего вся энергия освобождается в виде тепла.[2, 1994]

Цикл лимонной кислоты (цикл трикарбоновых кислот, цикл Кребса).

Цикл лимонной кислоты представляет собой серию реакций, протекающих в

митохондриях, в ходе которых осуществляется катаболизм ацетильных групп и

высвобождение водородных эквивалентов; при окислении последних

поставляется свободная энергия топливных ресурсов тканей. Ацетильные группы

находятся в составе ацетил-КоА (активного ацетата), тиоэфира кофермента А.

Главная функция цикла лимонной кислоты состоит в том, что он является

общим конечным путем окисления углеводов, белков и жиров, поскольку в ходе

метаболизма глюкоза, жирные кислоты и аминокислоты превращаются либо в

ацетил-СоА, либо в промежуточные соединения цикла. Цикл лимонной кислоты

играет также главную роль в процессах глюконеогенеза, переаминирования,

дезаминирования и липогенеза, Хотя ряд этих процессов протекает во многих

тканях, печень - единственный орган, в котором идут все перечисленные

процессы. Поэтому серьезные последствия вызывает повреждение большого числа

клеток печени или замещение их соединительной тканью. О жизненно важной

роли цикла лимонной кислоты свидетельствует и тот факт, что у человека

почти не известны генетические изменения ферментов, катализирующих реакции

цикла, так как наличие таких нарушений несовместимо с нормальным

развитием.[10,1993]

Открытие ЦТК.

Впервые предположение о существовании такого цикла для окисления

пирувата в животных тканях было высказано в 1937 году Гансом Кребсом. Эта

идея родилась у него, когда он исследовал влияние анионов различных

органических кислот на скорость поглощения кислорода суспензиями

измельченных грудных мышц голубя, в которых происходило окисление пирувата.

Грудные мышцы отличаются чрезвычайно высокой интенсивностью

дыхания, что делает их особенно удобным объектом для изучения окислительной

активности. Кребс также подтвердил, что обнаруженные ранее в животных

тканях другие органические кислоты (янтарная, яблочная, фумаровая и

щавелевоуксусная) стимулируют окисление пирувата. Кроме того, он нашел, что

окисление пирувата мышечной тканью стимулируется шестиуглеродными

трикарбоновыми кислотами - лимонной, цис-аконитовой и изолимонной, а также

пятиуглеродной (-кетоглутаровой кислотой. Испытаны были и некоторые другие

встречающиеся в природе органические кислоты, но ни одна из них не

обнаружила подобной активности. Обращал на себя внимание сам характер

стимулирующего действия активных кислот: даже малого количества любой из

них было достаточно для того, чтобы вызвать окисление во много раз большего

количества пирувата.[9, 1991]

Простые эксперименты, а также логические рассуждения позволили Кребсу

высказать предположение, что цикл, который он назвал циклом лимонной

кислоты, является главным путем окисления углеводов в мышце. После, цикл

лимонной кислоты был обнаружен практически во всех тканях высших животных и

растений и у многих аэробных микроорганизмов. За это важное открытие Кребс

был удостоен в 1953 году Нобелевской премии. Юджин Кеннеди и Альберт

Ленинджер показали позднее, что все реакции цикла лимонной кислоты

протекают в митохондриях животных клеток. В изолированных митохондриях

печени крысы были обнаружены не только все ферменты и коферменты цикла

лимонной кислоты; здесь же, как выяснилось, локализованы все ферменты и

белки, которые требуются для последней стадии дыхания, т.е. для переноса

электронов и окислительного фосфорилирования. Поэтому митохондрии с полным

правом называют «силовыми станциями» клетки.

Катаболическая роль цикла лимонной кислоты

Цикл начинается со взаимодействия молекулы ацетил-СоА с

щавелевоуксусной кислотой (оксалоацетатом), в результате которого

образуется шестиуглеродная трикарбоновая кислота, называемая лимонной.

Далее следует серия реакций, в ходе которых происходит высвобождение двух

молекул С02 и регенерация оксалоацетата. Поскольку количество

оксалоацетата, необходимое для превращения большого числа ацетильных единиц

в С02, весьма невелико, можно считать, что оксалоацетат выполняет

каталитическую роль.

Цикл лимонной кислоты является механизмом, обеспечивающим улавливание

большей части свободной энергии, освобождаемой в процессе окисления

углеводов, липидов и белков. В процессе окисления ацетил-СоА благодаря

активности ряда специфических дегидрогеназ происходит образование

восстановительных эквивалентов в форме водорода или электронов. Последние

поступают в дыхательную цепь; при функционировании этой цепи

происходит окислительное фосфорилирование, то есть синтезируется АТФ.

Ферменты цикла лимонной кислоты локализованы в митохондриальном

матриксе, где они находятся либо в свободном состоянии, либо на внутренней

поверхности внутренней митохондриальной мембраны; в последнем случае

облегчается перенос восстановительных эквивалентов на ферменты

дыхательной цепи, локализованные во внутренней митохондриальной

мембране.[11, 1989]

Реакции ЦТК.

Начальная реакция - конденсация ацетил-СоА и оксалоацетата,

катализируется конденсирующим ферментом, цитратсинтетазой, при этом

происходит образование связи углерод-углерод между метальным углеродом

ацетил-СоА и карбонильным углеродом оксалоацетата. За реакцией конденсации,

приводящей к образованию цитрил-СоА, следует гидролиз тиоэфирной связи,

сопровождающийся потерей большого количества свободной энергии в форме

теплоты; это определяет протекание реакции слева на право до ее завершения:

Ацетил-СоА + Оксалоацетат + Н2О > Цитрат + CoA-SH

Превращение цитрата в изоцитрат катализируется аконитазой, содержащей

железо в двухвалентном состоянии. Эта реакция осуществляется в две стадии:

сначала происходит дегидратация с образованием цис-аконитата (часть его

остается в комплексе с ферментом), а затем - гидратация и образование

изоцитрата:

Цитрат ? цис -Аконитат ? Изоцитрат – Н2О

Реакция ингибируется фторацетатом, который сначала превращается во

фторацетил-СоА; последний конденсируется с оксалоацетатом, образуя

фторцитрат. Непосредственным ингибитором аконитазы является

фторцитрат, при ингибировании накапливается цитрат.

Эксперименты с использованием промежуточных соединений показывают,

что аконитаза взаимодействует с цитратом ассиметрично: она всегда действует

на ту часть молекулы цитрата, которая образовалась из оксалоацетата.

Возможно, что цис-аконитат не является обязательным интермедиатом между

цитратом и изоцитратом и образуется на боковой ветви основного пути.

Далее изоцитратдегидрогеназа катализирует дегидрогенирование с

образованием оксалосукцината. Описаны три различных формы

изоцитратдегидрогеназы. Одна из них, НАД-зависимая, найдена только в

митохондриях. Две другие формы являются НАДФ-зависимыми, причем одна из них

также находится в митохондриях, а другая в цитозоле. Окисление изоцитрата,

связанное с работой дыхательной цепи, осуществляется почти исключительно

НАД-зависимым ферментом:

Изоцитрат + НАД+ ? Оксалосукцинат (в комплексе с ферментом) ?

альфакетоглутарат + СО2+ НАДН2

Рисунок 5. Реакции цикла Кребса.[10,1993]

Далее следует декарбоксилирование с образованием

альфакетоглутарата, которое также катализируется

изоцитратдегидрогеназой. Важным компонентом реакции

декарбоксилирования являются ионы Mg2+ (или Мn2+). Судя по имеющимся

данным, оксалосукцинат, образующийся на промежуточной стадии реакции,

остается в комплексе с ферментом.

Альфакетоглутарат, в свою очередь, подвергается окислительному

декарбоксилированию, сходному с окислительным декарбоксилированием

пирувата: в обоих случаях субстратом является альфакетокислота. Реакция

катализируется альфакетоглутаратдегидрогеназным комплексом и требует

участия того же набора кофакторов - тиаминдифосфата, липоата, НАД+, ФАД и

СоА; в результате образуется сукцинил-СоА - тиоэфир, содержащий

высокоэнергетическую связь.

?-кетоглуторат + НАД+ + CoA-SH > Сукцинил-СоА + СО2 + НАДН+Н+

Равновесие реакции настолько сильно сдвинуто в сторону образования

сукцинил-СоА, что ее можно считать физиологически однонаправленной. Как и

при окислении пирувата, реакция ингибируется арсенатом, что приводит к

накоплению субстрата (альфакетоглутарат).

Продолжением цикла является превращение сукцинил-СоА в сукцинат,

катализируемое сукцинаттиокиназой (сукцинил-СоА-синтетазой):

Сукцинил-СоА + ФН + ГДФ? Сукцинат + ГТФ + CoA-SH

Одним из субстратов реакций является ГДФ (или ИДФ), из которого в

присутствии неорганического фосфата образуется ГТФ (ИТФ). Это -

единственная стадия цикла лимонной кислоты, в ходе которой генерируется

высокоэнергетическая фосфатная связь на субстратном уровне; при

окислительном декарбоксилировании ?-кетоглутарата потенциальное количество

свободной энергии достаточно для образования НАДН и высокоэнергетической

фосфатной связи. В реакции, катализируемой фосфокиназой, АТФ может

образовываться как из ГТФ, так и из ИТФ. Например:

ГТФ+АДФ (ГДФ+АТФ.

В альтернативной реакции, протекающей во внепеченочных тканях и

катализируемой сукцинил-СоА-ацетоацетат-СоА-трансферазой, сукцинил-СоА

превращается в сукцинат сопряженно с превращением ацетоацетата в

ацетоацетил-СоА. Впечени имеется диацилазная активность,

обеспечивающая гидролиз части сукцинил-СоА с образованием сукцината и СоА.

Далее сукцинат дегидрогенируется, затем присоединяется молекула воды, и

следует еще одна стадия дегидрогенирования, приводящая к регенерации

оксалоацетата:

Сукцинат + ФАД ( Фумарат + ФАДН2

Первое дегидрогенирование катализируется сукцинатдегидрогеназой,

связанной с внутренней поверхностью внутренней митохондриальной мембраны.

Это единственная дегидрогеназная реакция ЦТК, в ходе которой осуществляется

прямой перенос с субстрата на флавопротеин без участия НАД+. Фермент

содержит ФАД и железо-серный белок. В результате дегидрогенирования

образуется фумарат. Как показали эксперименты с использованием изотопов,

фермент стереоспецифичен к транс-атомам водорода метиленовых групп

сукцината. Добавление малоната или оксалоацетата ингибирует

сукцинатдегидрогеназу, что приводит к накоплению сукцината.

Фумараза (фумаратгидротаза) катализирует присоединение воды к фумарату

с образованием малата:

Фумарат +Н2О ( L-малат

Фумараза специфична к L-изомеру малата, она катализирует присоединение

компонентов молекулы воды по двойной связи фумарата в транс-конфигурации.

Малатдегидрогеназа катализирует превращение малата в оксалоацетат, реакция

идет с участием НАД+:

L-малат + НАД+ ( 0ксалоацетат + НАДН2

Хотя равновесие этой реакции сильно сдвинуто в направлении малата,

реально она протекает в направлении оксалоацетата, поскольку он вместе с

НАДН постоянно потребляется в других реакциях.

Ферменты цикла лимонной кислоты, за исключением

альфакетоглутарат- и сукцинатдегидрогеназы, обнаруживаются и вне

митохондрий. Однако некоторые из этих ферментов (например,

малатдегидрогеназа) отличаются от соответствующих митохондриальных

ферментов.

Энергетика цикла лимонной кислоты.

В результате окисления, катализируемого дегидрогеназами ЦТК, на каждую

катаболизируемую за период одного цикла молекулу ацетил-СоА образуются три

молекулы НАДН и одна молекула ФАДН2. Эти восстановительные эквиваленты

передаются в дыхательную цепь, локализованную в митохондриальной мембране.

При прохождении по цепи восстановительные эквиваленты НАДН

генерируют три высокоэнергетические фосфатные связи посредством

образования АТФ из АДФ в процессе окислительного фосфорилирования. За счет

ФАДН2 генерируется только две высокоэнергетические фосфатные связи,

поскольку ФАДН2 переносит восстановительные эквиваленты на кофермент Q и,

следовательно, в обход первого участка цепи окислительного

Страницы: 1, 2, 3, 4


реферат скачать
НОВОСТИ реферат скачать
реферат скачать
ВХОД реферат скачать
Логин:
Пароль:
регистрация
забыли пароль?

реферат скачать    
реферат скачать
ТЕГИ реферат скачать

Рефераты бесплатно, курсовые, дипломы, научные работы, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.