![]() |
|
|
Физика (Шпаргалка)Физика (Шпаргалка)Электростатика. Способность к электризации. - способность тел притягивать к себе предметы. Эти тела оказ. заряженными. Q=ne Q - заряд тела n=1,2,... Заряды приобретаемые при электризации всегда кратны е и заряды явл. дискретными. Сущ. три способа электризации тел. 1) Электризация через трение - трибоэлектризаия. 2) Электризация наведением (явление электростатической индукции). 3)Электризация с помощью электритирования. Электрическ. заряды сохр. на заряженных телах различное время в зависемости от способа электризации в1) и 2) - короткое время , 3) - годы и десятки лет. В замкгутой системе электриз тел (нет обмена зарядами с внешними телами) алгебраическая сумма эл. зарядов остается постояной при любых процессах происходящих в этой системе. SQi=const i Точечный заряд это физич. абстракция. Точечным зарядом принято называть заряж. тело розмера которого малы по сравнению с расст. до точки исследования. Одноименные заряды отталкиваются, разноименные притягиваются. Зак. Куллона. Сила взаимодействия междуточечными неподвиж зарядами q1 и q2 прямопропорцианальны величине этих зарядов и обратнопропорц. расст. между ними. F=kґ((q1q2)/r2 k=1/4pe0 e0=8,85ґ10-12 Ф/M e0 - фундоментальная газовая постоянная назв газовой постоянной. k=9109 M/Ф Зак. Куллона (в другом виде) F=(1/4pe0)ґзq1q2з/r2 вакуум e=1 F=(1/4pe0)ґзq1q2з/er2 для среды e№1 Если точечн. заряд поместитьв однородн. безгранич.среду куллоновская сила уменьшится в e раз по сравнению с вакуумом. e - диэлектр. проницаемость среды. У любой среды кроме вакуума e>1. Зак. Куллона в векторной форме. Для этого воспользуемся единичным ортом по направлению вдоль расстояния между двумя зарядами. _ _ _ _ er=r/r r =erґr _ _ F=(1/4pe0)ґ(зq1q2зґr)/r3 векторная форма В Си - сист единица заряда 1Кл=1Аґс 1Куллон - это заряд, протекаемый за 1 с через все поперечное сечение проводника, по которому течет то А с силой 1А. Зак.Куллона может быть применен для тел значительных размеров если их разбить на точечные заряды. Кулл. силы - центральные, т.е. они направлены по линии соед. центр зарядов. Зак. Куллона справедлив для очень больших расстояний до десятков километров. При уменьш. расст. до 10-15 м справедлив, при меньших несправедлив. Электростатич. поле. Хар. электростатич.поля. _ _ (Е, D, j) В пространстве вокруг эл. зарядов возникает электростатическое поле (заряды не подвиж.). Принято считать, что электростатическое поле является объективной реальностью. Обнаружить поле можно с помощью пробных электрических зарядов. Пробн., полож., точечный заряд должен быть таким, чтобы он не искажал картины иследуемого поля. Напр. электростатич. поля. _ Е - напряженность электростатического поля. Напряженность электростатического поля является силовой характеристикой. _ Напр. поля в данной Е=F/q0 точке пространства явл. физ. вел. численно равная силе (куллоновск.) действ. в данной точке на единичный неподвижный пробный заряд. [E]=H/Кл [E]=В/м Силовая линия - линия, в каждой точке которой напр. поля Е направлена по касательной. Силовые линии строят с опред. густотой соответствующей модулю напр. поля: через площадку 1 м2 проводят количество линий Е равное модулю Е. При графическом представлении видно, что в местах с более густым располож. Е напр. больше. Вывод формул для напр. поля точечн. заряда. q - заряд создающий поле. q0 - пробн. заряд. Е=(1/4pe0)ґ(qґq0)/(r2ґq0) E=(1/4pe0)ґq/r2 Из E=(1/4pe0)ґq/r2 следует что Е зависет прямопропорцианально величине заряда и обратнопропорц. расст. от заряда до т. исследов. В однородн. безгр. среде с e№1 (e>1) напр. поля уменьш. в e раз. E=(1/4pe0)ґq/er2 _ E=(1/4pe0)ґq2/r3 Электрическое смещение. _ Опред. формулой для D явл. следущее в данной т. среды электрическое смещение численно равно произвед. диэлектр. проницаемости, эл. постоянн. и напр. поля. _ D E D=ee0E [D]=Кл/м2 Напр. эл. поля завсет от e среды поэтому при наличии несколбких граничащих диэлектриков на границе разрыва двух сред напр. поля меняется скачком (линии _ вектора Е терпят разрыв). _ Вектор D не завис. от e среды т.е. явл. однаков. по величине _ во всех средах т.е. скачка D нет , разрыва нет. _ Покажем что D независ от e. D=ee0ґ(kq)/(e0ґr2) D=(1/4p)ґq/(eґr2) Потенцеал поля. Силы электростатич. поля консервативные т.е. независ. от траэктории движения заряда. _ F=- gradП Fx= -¶П/¶x аналогич Fy и Fz 1) F= - dП/dr Для электростатич. сил F=f(r). Воспользуемся этой зависемостью для введения третей характеристики поля - потенцеала. Преобр. 1) 2) dП= - Fdr F - куллоновская сила взаимодействия между двумя точечн. зарядами q и q0. F=k(чqq0ч/r2) Подставим F в 2) и проинтегрируем лев. и прав. часть. 3) тdП=т -k(чqq0ч/r2)dr из 3) П= -kчqq0чтdr/r2= =kчqq0чґ(1/r)+C Разделим лев. и прав. часть 4) на q0. 5) j=П/q0=(1/4pe0 )ґ(q/r)+C 6) j=П/q0 Потенцеал поля в данной точке численно равен потенцеальной энерии пробного заряда помещенного в данную точку. [j]=B=Дж/К 7) j=(1/4pe0 )ґ(q/r) при j=0 r®Ґ , j ~ d при r=const , j ~1/r при q=const При q>0 j>0 + При q1 Eд>l , r>>l/2)=(kq2rl)/r4=k(qp/r3) E=k(2p/r3) E~1/r3 Поле в т. С на перпендик. оси диполя. k, q, l, r>>l, p=ql, e=1 , r=OC E - ? _ чEч=2Пр.Е+ Е+=Е_ в силу симметрии зар. Е+=Е_=k(q/(rў)2) E+/E_=cosa=l /2rў Пр.Е+=Пр.Е_=Е(l /2) E=2Пр.Е+=2Пр.Е Пр.Е+=Е+сosa=(kq/(rў)2)ґ ґl/2rў _ Пр.Е+/E+=cos aE+ rў~r при r>>l E=2(kq/(rў)2)ґl=kql /(rў)3= =kp/r3 (неправильно) E=k(p/r3) _ _ Потоки D и Е. Пусть электростатическое поле будет однородно т.е. такое _ поле у котор. D=const и все линии поля пп по направлению , введ. в это поле плоск. поверхность площадью S, строем нормаль. _ Пр.D=Dncosa _ поток D FD=DcosaґS 1) FD=Dncosa _ _ Потоком D или E назв. физ. вел. числ. = кол - ву. линий _ _ D или Е пронизывающих исследуемую поверхность при _ _ условии D или Е ^ поверхности. FЕ=ЕnS 2) [FD]=Кл [FЕ]=Вґм Поток характеристика скалярная, алгебраическая. При a0 При a0 , eш=e , ecp=1 , r=const , R - радиус шара 1) r>R (вне шара) 2) rER (скачок) вн сн вн сн Завис. Е(r) При eсрR, то внутрь поверхности попадает весь заряд и по теор. Гаусса 4pr2E=Q/e0 , откуда E=(1/4pe0)ґQ/r2 (r і R) Если rўR 2plЕ=t(l/e0) , от сюда Е=(1/2pe0)(t /r) (r і R). Если r0 _ (+ зар) div D>0 - исток расхождения. Если rR Для точек вне сферы (r>R) из теор. Гаусса напряженность Е вычисляется Е=1/2pe0=q/r2 Внутри (rR j =(1/4pe0)(q/r) Внутри напряженность поля =0 поэтому j1 - j2=0 j1=j2=jR=(1/4pe0)(q/R) j =const Нарис. графики. Связь между напряженностью поля и потенциалом в диффер. форме. Градиент потенциал. Для получения связи между Е и j в одной точке воспользуемся выраж. для элементарн. работы при перемещении q0 на dl по произвол. траектории. dA=q0Eldl В силу потенциального характера сил электростатического поля эта работа соверш. за счет убыли потенциальной энергии. dA= - q0 dj = - П Eldl = - dj 3) El= - (dj /dl ) Проэкция вектора напряж. поля на произвольном направлении (l) равна взятой с обратным знаком производной по этому направлению. 4) Ex= - (dj /dx) Ey= - (dj /dy) Ez= - (dj /dz) _ _ _ E= - ( i (¶/¶x)+j (¶/¶y)+ _ +k (¶/¶z))ґj _ E= -grad Напряженность поля в данной т. равна взятому с обр. знаком градиенту потенцеала в этой точке. Градиент сколяр. фукции явл. вектором. Градиент показывает быстроту изменения потенцеала и направлен в стор. увелич потенцеала. Напряж. поля всегда перпендикулярна к эквпотенцеальным линиям. Пусть точечный заряд q0 перемещается в доль эквипотенцеала j =const , dl - на эквипотенцеали. dA=q0Eldl dA=0 т.к. Dj =0 El=Ecosa q0Ecosa dl =0 q0№0 E№0 dl№0 cosa=0 a=900 Проводники в электрич. поле. Электроемкость проводников. Конденсаторы. Энергия поля. §1 Условия равновесия заряда на проводнике. Электростатич. защита. Внесем в электрич. поле напряженностью E0 тело. При внесении проводника все электроны окажутся в электростатич поля. В нутри проводника за короткое время призойдет разделение эл. зарядов (электростатич индукция) с накоплением их на концах. _ _ _ E0 - внешнее E' ЇE0 _ E' внутри проводника _ _ _ _ _ Е=E0+E'=0 E'=E0 E - результ. поле в нутри проводника. В результате рассмотренныых процессов. Усл. равновес. заряда. 1)Напр. поля во всех точках внутри проводника Е=0 . 2)Поверхность проводника явл. эквипотенцеальной j =const. _ 3) Напр. поля Е ^ эквипот. j =const. В силу Е=0 проводники люб. формы явл. защитой от электростатич. поля. Поле у поверхн. заряж. проводника. Рассм. произаольную форму проводника заряж. по поверх. с поверхностной плотностью s . Воспольз. теор. Гаусса в интегральной форме. _ _ fDdS=Sqi s На заряж. поверхности отсечем круг площадью S. fe0EdS=e0EтdS s s e0EґS=sґS в т. А E=s/e0 D=e0E D=s Напр. поля прямопропорц. поверх. плотности заряда проводника в окрестностях этой точке. Разделение зар. по проводнику завис. от его поверх. (у острых углов заряд больше , напряж. сильнее). Электроемкость проводника. Единица электроемкости. Рассм. проводник произв. формы. В близи этого проводника других проводников нет. такой проводник назв. уединенным проводником. Будем заряжать уединенный проводник. При увеличении заряда потенциал прямо пропорционально зависет от Q. Связь между зарядом Q , потенциалом j , и формой проводника дает электроемкость С=Q/j . Емкостью уединенного проводника - назв. физ вел. числ.= величине зар. сообщаемого этому проводнику при увеличении потенциала на 1В. В Си 1Ф - фарад. 1Ф=1Кл/1В Электроемкость зависет от размеров , формы и диэлектрической проницаемости среды. С=4pee0R j =(1/4pee0)ґ(Q/R) Уединенные проводники при приближении к ним других проводников свою емкость существенно меняет (уменьш. за счет взаимного влияния электростотич. полей). Лекция. Конденсаторы. Типы конденсаторов. Конденсатор - устройство позволяющие получать стабильное значение емкости независящее от окружения. Создание закрытого поля не влияющего на металлич. предметы достигается за счет двух металлич. разноимен. заряж. электродов. В зависемости от формы обкладок различают плоские , цилиндрические , сферические конденсаторы. Расчет емкости конденс. разл. типов. 1) Дано: s , Ѕ+ s Ѕ=Ѕ - s Ѕ , e , S , d C - ? C=q/j уедин. проводника Для конденс. 1) С= q/Dj =q/U Dj =U - напряжние С=sS/Ed=sS/[(s/ee0)ґd]= =ee0S/d 2) Цилиндрич. конденсатор. R1 , R2 , l , e Ѕ+q Ѕ=Ѕ - qЅ +t , -t C - ? Воспользуемся 1) R2 С= tl/(тEdr) E= t/2pee0r R1 Напряженность поля произвольной точки располож. между цилиндрами на расст. r от оси определяется только зарядами на внутреннем цилиндре (см. теор. Гаусса). Аналогично для тонкой нити. R2 С= tl/(т(t/2pee0r)dr= R1 = [tl/(t /2pee0ґln R2/R1)] 3) C=[tl/(t /2pee0ґln R2/R1)] емкость цилиндрич. конденс. Сферич. конденсатор. Сферич. конденс. - две концентрические сферы определ. радиуса. Дано: e , R1 , R2 Ѕ+q Ѕ=Ѕ - qЅ C - ? Использ. 1) R2 С=q/= q/Dj =q/(тEdr)= R2 R1 =q/(т(q/4pee0r2)dr) R1 C=q/((q/4pee0)ґ(1/R1 - 1/R2)) C=4pee0R1R2/(R2 - R1) Для всех видов конденс. видно что емкость зависит от параметров электродов. Всегда с помещением диэлектрика между электродов емкость увелич. Соединение конденсаторов. Батареи конденсаторов. Конденсаторы часто приходится соединять вместе. Часто возник. необходимость соед. их в батареи (когда нужно иметь другую емкость). 1) Последовательное соед. - соед. при котор. отрицательные электроды соед. с полож. У последовательно соед. Конденсаторов заряды всех обкладок равны по модулю , а разность потенциалов на зажимах батареи n Dj =еj i i=1 Для любого из рассматриваемых конденс. Dj i=Q/Ci С другой стороны , n Dj =Q/C=Qе(1/Ci) i=1 Откуда n 1/C=е1/Ci i=1 2) Параллельное соед. - соед. при котор. соедин. между собой обкладки одного знака. n С=еCi i=1 У параллел. соед. конденсоторов разность потенциалов на обкладках конденсаторов одинакова и равна j а -j b. Если емкости конденсаторов С1 ,С2, ..., С3 то их заряды равны Q1=C1(j а -j b) Q2=C2(j а -j b) а заряд батареи конденсаторов n Q=еQi=(C1+C2+...+Cn)ґ i=1 ґ(j а -j b) Полная емкость батареи n С=Q/(j а -j b)= еCi i=1 Энергия заряженного проводника и конденсатора. Рассм. уедин. проводник произв. формы. Проведем зарядку этого проводника , при этом подсчитаем работу внеш. сил. Пусть при перенесении dq из Ґ , проводник приобрел потенциал j . Элементар. работа dA=j dq. Допустим зарядили до Q . С=q/j j=q/C Вся работа совершаемая при зарядке проводника до Q равна. 1) A=Q2/2C 2) A=Cj2/2 3) A=Qj/2 В окружающем пространстве после зарядки проводника возникло электростатическое поле, значит работа при зарядке проводника расходуется на создание поля. Значит работа переходит полностью в энергию электростатич. поля. Wэл=1) или 2) или 3) Из 1) , 2) ,3) не следует ответа что энерг. Wn локализована в самом поле поскольку в формуле стоят параметры заряж. проводника. Конденсатор. Рассм. зарядку конденсатора состоящего из двух обкладок Первый путь - dq перенос. из Ґ на одну из обкладок , тогда на второй обкладке возникнет -. Второй путь - элементарн. заряд dq перенести из одной обкладки на вторую. Независимо от способа формулы 1) , 2) , 3) справедливы (только j изменяется на Dj). Энергия электростатического поля. Объемная плотность энергии. Носителем энергии явл. само поле. Для подтверждения этой идеи возьмем формулу 1). Wэл=Q2/2C применим ее к плоск. конденсатору. (параметры известны). Wэл=s2S2d/2ee0S=(s2/2ee0)ґSd= =(ee0s2/2(ee0)2)ґV 1) Wэл=(ee0E2/2)ґV Из 1) следует что носителем энергии явл. поле с напряженностью Е. Из 1) следует что все стоящее перед объемом - это объемная плотность энерг. электростатического поля. 2) wэл=(ee0E2/2) 2') wэл=DE/2 В физике доказывается что 2) и 2') можно применять и для неоднородного поля, для котор. полная энерг. может быть вычесленна по формуле 3) Wэл=тwэлdV v Лекция. Диэлектрики в эл. поле. Поляризация диэлектриков. §1 Проводники и диэлектрики. сущность явл. поляризации. У проводников электроны могут свободно перемещаться по всей толще образца. явл. эле- ктростатич индукции Диэлектрики - вещества плохо или совсем непроводящие эл. ток. В диэлектрике свободные заряды отсутствуют. У диэлектрика очень большое сопротивление. Во внешнем поле у диэлектриков происходят очень существенные изменения. Заряды находящиеся в атоме во внешнем поле Е0 смещаются или пытаются сместиться. Диэлектрик во внеш. эл. поле поляризуется. поляризуется При поляризации диэлектрика Е№0. У диэлектрика во внеш. эл. поле на поверхности образца появл. связнные некомпенсированные поляризованные заряды. Явл. поляризации заключ. в появлении электрич. поля Е при внесении во внеш. поле Е0 появл. связанных поверхностных зар. и появлении в толще образца , в каждой единице объема дипольного момента. Диполь во внеш. эл поле. Рассм. электрический диполь образованный зарядом q. _ Электрич. момент p=ql , где l- плечо диполя. Вносим диполь во внеш. поле. _ Е=const Ѕ+qЅ=Ѕ-qЅ=q Запишем силы действующие на заряд. _ _ На +q - F+ , на -q - F_ _ _ _ ЅF+Ѕ=ЅF_Ѕ=ЅFЅ=F На электрич. момент действ. пара сил , при этом возник вращающий момент М. М=Fd=Flsina=Eqlsina= =Epsina d - плечо силы _ M=[P,E] -вращ. момент (сколяр. произв.) В однородн. эл поле электрический диполь поворачивается до тех пор пока эл. момент не станет направлен по внеш. _ _ полю PE т.е. эл. диполь в полож. устойчивого равновеия. В неоднородном эл. поле диполь наряду с поворотом испытывает поступательное движ. в область неоднородного поля. Типы диэлектриков. Виды (механизм) поляризации диэлектриков. В зависимости от структуры молекул различ. два типа диэлектриков поляр. и неполяр. неполяр. полярные O2 , H2 , CO ... HCl ,...,CO2 Симметрич. Не симметри- структура ма- чная структу- лекул. ра. Без внеш. поля. (Е0=0) В О центры Центры тяж. тяж. (+) и (-) не совпадают совпадают. _ _ Pi=0 Pi№0 еPi=0 еPi=0 i i В силу хао- тич. движ. диполей. У неполяр. диэл. в отсу- тств. внеш. по- ля малекулы не имеют собств. эл.моментов. (диполей нет) Во внеш. поле _ Pi№0 Ориентация _ диполи по Pi№0 внеш. пол. Е0 еPi№0 еPi№0 i i диполи Поляризация в завис. от вида механизма назв. Диформацион- Ориентаци- ная (электрон- онная поля- ная). ризация. Независимо от вида поляризации у любого поляризованного диэлектрика появляется в эл. поле суммарный электрический дипольный момент. Поляризованность. Вектор поляризованности. Связь его с поверхностными зарядами. Явл. поляризации описывается с помощью важной характеристики Страницы: 1, 2 |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, курсовые, дипломы, научные работы, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |