![]() |
|
|
Вторично-ионная масса спектрометрияВторично-ионная масса спектрометрияКалужский Филиал Московского Государственного Технического Университета им. Н. Э. Баумана Кафедра Материаловедения и Материалов Электронной Техники КУРСОВАЯ РАБОТА по курсу МИМ и КЭТ на тему: “Вторично-ионная масс-спектрометрия“ выполнил: студент гр. ФТМ—81 Тимофеев А. Ю. проверил: Леднева Ф. И. г. Калуга 1997 год. Содержание Введение 3 Взаимодействие ионов с веществом 3 Вторично-ионная эмиссия 5 Оборудование ВИМС. 8 Принцип действия установок. 9 Установки, не обеспечивающие анализа распределения частиц по поверхности 10 Установки, позволяющие получать сведения о распределении 11 элемента по поверхности, со сканирующим ионным зондом Установки с прямым изображением 11 Порог чувствительности 12 Анализ следов элементов 14 Ионное изображение 16 Требования к первичному ионному пучку 17 Масс-спектрометрический анализ нейтральных 18 распыленных частиц Количественный анализ 19 Глубинные профили концентрации элементов 22 Приборные факторы, влияющие на разрешение 23 по глубине при измерении профилей концентрации Влияние ионно-матричных эффектов на разрешение 25 по глубине при измерении профилей концентрации Применения 26 Исследование поверхности 26 Глубинные профили концентрации 27 Распределение частиц по поверхности, 27 микроанализ и объемный анализ Заключение 27 Список литературы 29 Введение Возможности получения сведений о составе внешнего атомного слоя твердого тела значительно расширялись всвязи с разработкой и усовершенствованием метода вторично-ионной масс-спектрометрии (ВИМС) и других методов. Большинство таких методов близки к тому, чтобы анализировать саму поверхность, поскольку основная информация о составе материала поступает из его приповерхностной области толщиной порядка 10А, а чувствительность всех таких методов достаточна для обнаружения малых долей моноатомного слоя большинства элементов. Взаимодействие быстрых ионов с твердым телом приводит к выбиванию атомов и молекул материала как в нейтральном, так и в заряженном состоянии. На таком явлении сравнительного эффективного образования заряженных частиц (вторичных ионов) и на принципе высокочувствительных масс- спектрометрических измерениях и основан метод ВИМС. Хотя у него, как у любого другого метода, имеются свои недостатки, только он один дает столь широкие возможности исследования и поверхности, и объема твердого тела в одном приборе. Наиболее важными характерными особенностями метода, которые вызывают повышенный интерес к нему, являются очень низкий порог чувствительности для большинства элементов (меньше 10-4 моноатомного слоя), измерение профилей концентрации малых количеств примесей с разрешение по глубине меньше 50А, разрешение по поверхности порядка микрометра, возможность изотопического анализа и обнаружение элементов с малыми атомными номерами (H, Li, Be и т. д.) Взаимодействие ионов с веществом [pic] Фиг.1. Виды взаимодействий ионов с твердым телом [2]. В этом разделе рассматривается поведение ионов высоких энергий (1 - 100 кэВ), попадающих на поверхность твердого тела. Фиг.1 иллюстрирует 10 разновидностей взаимодействия ионов с поверхностью [2]. Падающий ион может обратно рассеиваться атомом или группой атомов бомбардируемого образца (1). Процесс обратного рассеяния обычно приводит к отклонению траектории иона от первоначального направления после столкновения и к обмену энергией между ионом и атомом мишени. Обмен энергией может быть упругим и неупругим в зависимости от типа взаимодействующих частиц и энергии иона. Импульс иона может быть достаточно велик для того, чтобы сместить поверхностный атом из положения, где он слабо связан с кристаллической структурой образца, в положение, где связь оказывается сильнее (2). Этот процесс называется атомной дислокацией. Ионы с более высокими энергиями могут вызывать внутренние дислокации в толще образца (3). Если соударяющиеся с поверхностью образца ионы передают настолько большой импульс, что полностью освобождают от связей один или несколько атомов, происходит физическое распыление (4). Ионы могут проникать в кристаллическую решетку и захватываться там, израсходовав свою энергию (ионная имплантация) (5) . В результате химических реакций ионов с поверхностными атомами на поверхности образуются новые химические соединения, причем самый верхний слой атомов может оказаться в газообразном состоянии и испариться (химическое распыление) (6). Бомбардирующие положительные ионы в результате процессса оже-нейтрализации могут приобретать на поверхности электроны и отражаться от нее в виде нейтральных атомов (7). Ионы могут оказаться связанными с поверхностью образца (адсорбированными) (8). При ионной бомбардировке металлических поверхностей в определенных условиях возможно возникновение вторичной электронной змиссии (9). Наконец, если поверхностные атомы возбуждаются до ионизированных состояний и покидают образец, имеет место вторичная ионная эмиссия (10). Замедляясь, ион передает энергию твердому телу. При анализе процессов потери энергии удобно различать два основных механизма: соударения с электронами и соударения с ядрами. Первый механизм состоит в том, что быстрый ион взаимодействует с электронами кристаллической решетки, в результате чего возникают возбуждение и ионизация атомов кристалла. Поскольку плотность электронов в веществе мишени высока и такие столкновения многочисленны, этот процесс, как и в случае потери энергии электронами, можно считать непрерывным . В рамках второго механизма взаимодействие происходит между экранированными зарядами ядер первичного иона и атомами мишени. Частота таких столкновений ниже, поэтому их можно рассматривать как упругие столкновения двух частиц. Ионы высоких энергий хорошо описываются резерфордовским рассеянием, ионы средних энергий - экранированным кулоновским рассеянием, однако при малых энергиях характер взаимодействия становится более сложным. Кроме перечисленных выше механизмов вклад в энергетические потери дает обмен зарядами между движущимся ионом и атомом мишени. Этот процесс наиболее эффективен, когда относительная скорость иона сравнима с боровской скоростью электрона ( ~106 м/с) . Таким образом, полные потери энергии - dЕ/dz можно представить в виде суммы трех составляющих - ядерной, электронной и обменной. При малых энергиях ионов преобладает взаимодействие с ядрами, которое приводит к появлению угловой расходимости пучка. При высоких энергиях более существенными становятся столкновения с электронами. Справедливо следующее эмпирическое правило: передача энергии кристаллической решетке осуществляется в основном за счет ядерных столкновений при энергиях меньше А кэВ, где А - атомный вес первичного иона. В промежуточном диапазоне энергий вклад потерь, обусловленных обменом заряда, может возрастать примерно до 10% от полных потерь. Зависимость энергетических потерь от энергии первичного иона показана на фиг.2. [pic] Фиг.2. Зависимость энергетических потерь иона от энергии [2]. [pic] Фиг.3. Схематическое представление взаимодействия ионов с мишенью [2]. Неупругие взаимодействия с электронами мишени вызывают вторичную электронную эмиссию, характеристическое рентгеновское излучение и испускание световых квантов. Упругие взаимодействия приводят к смещению атомов кристаллической решетки, появлению дефектов и поверхностному распылению. Эти процессы схематически проиллюстрированы на фиг. 3. Энергетический спектр рассеянных твердотельной мишенью ионов с начальной энергией Е0 схематически представлен на фиг.4. Здесь видны широкий низкоэнергетический (10 - 30 эВ) горб, соответствующий испусканию нейтральных атомов (распыленные атомы), и высокоэнергетический горб, расположенный вблизи энергии первичного иона Е0 (упругорассеянные ионы). Вторично-ионная эмиссия Основные физические и приборные параметры, характеризующие метод ВИМС, охватываются формулами (1) - (3). Коэффициент вторичной ионной эмиссии SА(, т. е. число (положительных или отрицательных) ионов на один падающий ион, для элемента А в матрице образца дается выражением SА(=(А(САS, (1) где (А( - отношение числа вторичных ионов (положительных или отрицательных) элемента А к полному числу нейтральных и заряженных распыленных частиц данного элемента, а СА -атомная концентрация данного элемента в образце. Множитель S - полный коэффициент распыления материала (число атомов на один первичный ион). В него входят все частицы, покидающие поверхность, как нейтральные, так и ионы. Величины (А( и S сильно зависят от состава матрицы образца, поскольку отношение (А( связано с электронными свойствами поверхности, а S в большой степени определяется элементарными энергиями связи или теплотой атомизации твердого тела. Любой теоретический способ пересчета измеренного выхода вторичных ионов в атомные концентрации должен, давать абсолютное значение отношения (А( или набор его приведенных значений для любой матрицы. [pic] Фиг.4. Энергетический спектр электронов, рассеянных при соударении с твердотельной мишенью [2]. Вторичный ионный ток (А( (число ионов в секунду), измеряемый в приборе ВИМС, дается выражением (А( =(ASA(IP, (2) где (А( - ионный ток для моноизотопного элемента (для данного компонента многоизотопного элемента ионный ток равен fa(А(, где fa,- содержание изотопа а в элементе А). Величина (A -эффективность регистрации ионов данного изотопа в используемом приборе ВИМС. Она равна произведению эффективности переноса ионов через масс-анализатор на чувствительность ионного детектора. Множитель (A обычно можно рассматривать как константу, не зависящую от вида элемента или массы изотопа, если энергетические распределения вторичных ионов примерно одинаковы и имеют максимум при нескольких электрон-вольтах, так что зависящее от массы изменение чувствительности детектора частиц мало. Наконец, IP полный ток первичных ионов (число ионов в секунду), падающих на образец. Конечно, величина IP связана с плотностью тока первичных ионов DP (число ионов за секунду на 1 см2) и диаметром пучка d (см). Если для простоты принять, что сечение пучка круглое, а плотность DP тока постоянна в пределах сечения, то IP=(0,25()DPd2. (3) При существующих источниках первичных ионов, используемых в приборах ВИМС, плотность тока на образец, как правило, не превышает 100 мА/см2 (в случае однозарядных ионов ток 1 mА соответствует потоку 6.2 1015 ион/с). В табл. 1 приводятся типичные значения параметров, входящих в формулы (1) - (3). Таблица 1. Типичные значения параметров в формулах (1)- (3) [1]. |(А( |10-5(10-1 | |S |1(10 | |(A |10-5(10-2 | | DP |10-6(10-2 | | |mA/cm2 | |d |10-4(10-1 cm | Самое важное значение в вопросе о возможностях ВИМС как метода анализа поверхностей имеет взаимосвязь между параметрами пучка первичных ионов, скоростью распыления поверхности и порогом чувствительности для элементов. Из-за отсутствия информации о такой взаимосвязи часто возникают неправильные представления о возможностях метода. Соотношения между током первичных ионов, диаметром и плотностью пучка, скоростью распыления поверхности и порогом чувствительности при типичных условиях иллюстрируются графиком, представленным на фиг.5. Скорость удаления (число монослоев в секунду) атомов мишени при заданной энергии ионов пропорциональна плотности их тока DP, а порог чувствительности при регистрации методом ВИМС (минимальное количество элемента, которое можно обнаружить в отсутствие перекрывания пиков масс-спектра) обратно пропорционален полному току ионов IP. Коэффициент пропорциональности между порогом чувствительности ВИМС и IP определяется исходя из результатов измерений для ряда элементов в различных матрицах путем приближенной оценки, основанной на экспериментальных значениях для типичных пар элемент - матрица. При построении графика на фиг.5 предполагалось, что площадь захвата анализатора, из которой вторичные ионы отбираются в анализатор, не меньше сечения пучка первичных ионов. Данное условие обычно выполняется в масс-спектрометрии, если диаметр области, из которой поступают ионы, не превышает 1 мм. [pic] Фиг. Зависимость между током первичных ионов, диаметром и плотностью первичного пучка, скоростью удаления атомных слоев и порогом чувствительности ВИМС[1]. Распыление ионным пучком - разрушающий процесс. Но если требуется, чтобы поверхность оставалась практически без изменения, то анализ методом ВИМС можно проводить при очень малых скоростях распыления образца (менее 10-4 монослоя в секунду) . Чтобы при этом обеспечить достаточную чувствительность метода ( (10-4 монослоя), как видно из фиг.5, необходим первичный ионный пучок с током 10-10 А диаметром 1 мм. При столь низкой плотности тока первичных ионов ( 10-5 мА/см2) скорость поступления на поверхность образца атомов или молекул остаточных газов может превысить скорость их распыления первичным пучком. Поэтому измерения методом ВИМС в таких условиях следует проводить в сверхвысоком или чистом (криогенном) вакууме. Указанные приборные условия приемлемы не во всех случаях анализа. Например, определение профиля концентрации примесей, присутствующих в малых количествах в поверхностной пленке толщиной свыше 5ОО А, удобно проводить при диаметре пучка, равном 100 мкм, и при скорости распыления, превышающей 10-1 атомных слоев в секунду. Еще более высокие плотности ионного тока требуются, чтобы обеспечить статистически значимые количества вторичных ионов с единицы площади поверхности, необходимые при исследовании распределения по поверхности следов элементов при помощи ионного микрозонда или масс-спектрального микроскопа. На основании сказанного и данных фиг.5 мы заключаем, что невозможно обеспечить поверхностное разрешение в несколько микрометров для примеси, содержание которой равно (10-4%, при скорости распыления менее 10-3 атомных слоев в секунду. Это взаимно исключающие условия. Методом ВИМС анализ поверхности можно проводить в двух разных режимах: при малой и большой плотности тока, распыляющего образец. В режиме малой плотности распыляющего тока изменяется состояние лишь малой части поверхности, благодаря чему почти выполняется основное требование, предъявляемое к методам анализа самой поверхности. В режиме же высоких плотностей токов и соответствующих больших скоростей распыления проводится измерение профилей распределения элементов по глубине, микроанализ и определение следовых количеств элементов ( 3000. В первом случае коэффициент ионной эмиссии уменьшается примерно во столько же раз, во сколько коэффициент выбивания молекулярных ионов уменьшается по сравнению с атомарными. В некоторых случаях этот метод вполне приемлем; но при решении многочисленных задач обнаружения следов примесей или микроанализа поверхности недопустимо большое снижение чувствительности характерное для этого метода. Второй способ является более прямым и с точки зрения анализа более предпочтителен. Чтобы выявить сложную структуру отдельных пиков в масс-спектрах используют для ВИМС приборы с высоким разрешением по массе. На фиг.9, представлена форма пика с массой 43 ат. ед. при разных разрешениях анализатора. Высокое разрешение очень важно для уменьшения или исключения в идентификации пиков m/е, особенно если основной целью является обнаружение следов элементов на уровне атомных концентраций, не превышающих 10-5. Вопрос о пороге чувствительности метода ВИМС для различных элементов исследовался многими авторами как теоретически, так и на основе результатов экспериментальных измерений. При этом были получены следующие примерные значения, подтвердившиеся в некоторых строго определенных условиях: менее 10-7 моноатомного слоя, атомная концентрация 10-9 и менее 10-18 г элемента. Но эти значения характерны лишь для некоторых частных случаев и не являются нормой на практике. Обычно мы имеем дело со сложными спектрами с многократными наложениями линий, в силу чего порог чувствительности оказывается сильно зависящим от природы матрицы образца. Поэтому, указывая порог чувствительности, необходимо указывать и соответствующие дополнительные факторы, в частности тип матрицы, и не следует делать огульные утверждения относительно того или иного элемента. Если пренебречь возможным перекрытием пиков, то порог чувствительности для некоторого элемента в матрице обратно пропорционален току первичных ионов IP, попадающему на образец. На фиг.5 и 10 показано, как [pic]Фиг.10. Зависимость порога чувствительности типичного прибора ВИМС от диаметра первичного ионного пучка[1]. изменяется порог чувствительности в зависимости от различных параметров, влияющих на ток первичных ионов. Приведенные здесь значения порога чувствительности основаны на экспериментальных данных, полученных в типичных для анализа условиях, когда первичными частицами служат ионы О2+. Область с простой штриховкой на фиг.10 вблизи линии 5 мА/см2 соответствует диапазону плотностей токов первичных частиц, обычно применяемых в установках типа ионного микрозонда или масс-спектрального микроскопа. Область с двойной штриховкой отвечает условиям, при которых существенно наложение линий сложных молекулярных ионов, и необходимо позаботиться об идентификации пиков по m/е. Истинное положение или высота этой области зависит как от матрицы образца, так и от разрешения по массам и чувствительности масс-анализатора. Для микроанализа поверхности, т.е. исследования областей диаметром >(Т , например в случае тонкого слоя, величина (R приблизительно равна разрешению (R метода по глубине. Страницы: 1, 2 |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, курсовые, дипломы, научные работы, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |