реферат скачать
 
Главная | Карта сайта
реферат скачать
РАЗДЕЛЫ

реферат скачать
ПАРТНЕРЫ

реферат скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат скачать
ПОИСК
Введите фамилию автора:


Инверторные источники питания для электродуговой сварки

1.4  Инвертор Мак-Мюррея (инвертирующий преобразователь)

Принцип работы инвертора Мак-Мюррея основан на коммутировании тока. Полумостовой инвертор работает на индуктивную нагрузку, как изображено на рис.6. Тиристоры ТА1 и ТА2 в этой схеме являются вспо­могательными. Они используются для коммутации основных тиристо­ров Т1 и Т2. Индуктивность L и емкость С являются коммутирующими элементами. Конденсатор предварительно заряжен слева отрицательно, а справа -положительно. Рабочие фазы этой схемы устройства следу­ющие.

Фаза I. Тиристор Т1 запускается, тем самым инициируется поло­жительный полупериод преобразования. Постоянный ток нагрузки протекает через тиристор Т1.

Фаза I I. В момент времени t1 запускается вспомогательный тирис­тор ТА1. По замкнутой цепи L, С, Т{ и  ТА1 начинает протекать ток, при этом ток через конденсатор синусоидально нарастает, как показано на рис.6в. В промежутке времени от t1 до t2 значение ic <I0. В момент времени t= t2;  tc = I0. Ток, текущий через тиристор Т1, становится равным нулю, и тиристор выключается. Следует заметить, что в этой фазе ток через тиристор Т1, уменьшается до нуля.

Фаза III. После выключения тиристора Т1 ток продолжает протекать через D1. Диод находится в состоянии проводимости до момента време­ни t3 до тех пор пока ic - I0 положительны. В момент времени t = t3 диод D1, перестает проводить, так как ток через него уменьшается до нуля.

Фаза IV. После того как диод D1 запирается, постоянный ток нагруз­ки протекает через конденсатор и дозаряжает его слева отрицательно, а справа положительно. Напряжение на конденсаторе изменяется линей­но, так как через конденсатор протекает постоянный ток.

Фаза V. Ток через диод увеличивается, в то время как ток через конденсатор уменьшается. Когда ток через тиристор Ta уменьшается до нуля, тиристор выключается.

Фаза VI. На индуктивной нагрузке изменяется полярность напряже­ния, и диод D1 смещается в прямом направлении. Начинается процесс рециркуляции. Энергия, запасенная в нагрузке, передается обратно в источник питания Vr После запирания диода D1  запускается тиристор Т2. Чтобы выключить тиристор Т2 необходимо включить тиристор ТA2. Далее подобные процессы повторяются аналогично вышеизложенным.


Рис.6 -  а) Схема инвертора Мак-Мюррея;

б) Фазы работы схемы;

в) Формы напряжения и токов инвертора Мак-Мюррея


При разработке инвертора его параметры выбираются исходя из наихудших условий, таких как минимальное входное напряжение и максимальный выходной ток.

1.5  Инвертор Мак-Мюррея - Бедфорда

Инвертор Мак-Мюррея содержит два вспомогательных тиристора. Ин­вертор Мак-Мюррея-Бедфорда не требует никаких вспомогательных тиристоров. Один основной тиристор в этой схеме коммутирует другой основной тиристор. Электрическая схема, рабочие фазы и форма вы­ходного сигнала инвертора Мак-Мюррея - Бедфорда изображены на рис.7. Рабочие фазы этой схемы устройства следующие.


Фаза I. Тиристор Т1 запущен. Постоянный ток протекает через тирис­тор Т1 , и индуктивность L1. Напряжение на индуктивности L1 равно нулю, так как через нее протекает постоянный ток. Конденсатор С, замкнут через Т1 и L1. Конденсатор С2 заряжен до напряжения  V1 + V2: верхняя обкладка заряжена положительно, а нижняя - отрицательно.



Рис.7 -  а) Схема инвертора Мак-Мюррея; б) Фазы работы схемы

Фаза II. После включения тиристора Т2 напряжение с конденсато­ра С2 подается на индуктивность L2. Это напряжение равно удвоенному напряжению питания. За счет взаимной индукции на индуктивности L1 появляется напряжение, равное напряжению на индуктивности L2. Напряжение на катоде тиристора Т1 равно учетверенному напряжению питания, а на аноде удвоенному напряжению питания. Таким образом, после включения тиристора Т2 тиристор  Т1 выключается. Быстрое вы­ключение тиристора L1 возможно благодаря тому, что энергия, запа­сенная в индуктивности L1 передается на индуктивность L2 поскольку общий магнитный поток должен оставаться постоянным. Из рис.7в видно, что ток в схеме перераспределяется от тиристора Т1 на тиристор Т2 в начале фазы II. По цепи L2 и С2 начинает протекать ток. Диод D2 сме­щается в обратном направлении напряжением на конденсаторе С2.

Фаза III. Как только полярность напряжения на конденсаторе из­меняется на обратную, диод D2 переходит в проводящее состояние и тем самым шунтирует конденсатор С2. Энергия, запасенная на индуктивнос­ти L2 поддерживает неизменное направление тока через тиристор Т2 и диод D2. Постепенно запасенная в индуктивности L2 энергия рассеивает­ся на активном сопротивлении нагрузки, и тиристор Т2 выключается.

Фаза IV. Диод D2 по-прежнему смещен в прямом направлении за счет тока, протекающего через индуктивность нагрузки. Здесь имеет место процесс рециркуляции энергии, запасенной на индуктивности нагрузки. Диод D2 находится в проводящем состоянии до тех пор, пока запасенная энергия передается источнику питания V2.

Тиристор Т2 снова включается, тем самым инициируя аналогич­ный отрицательный полупериод инвертора. В конце отрицательного полупериода тиристор Т1 остается в проводящем состоянии и процесс, описанный выше, повторяется.




Рис.7в -  Формы токов инвертора Мак-Мюррея –Бедфорда


1.6 Трехфазные инверторы

Трехфазные инверторы могут быть использованы в двух режимах:

1) 120-градусный режим работы;

2) 180-градусные режимы работы.


1.6.1 120-градусный режим работы

Тиристоры здесь нумеруются по аналогии с трехфазными двухполупериодными выпрямителями. Разность номеров тиристоров в каждой фазе равна трем. К трехфазному мостовому инвертору подключена активная нагрузка, состоящая из трех резисторов, как показано на рис.8.  При 120-градусном режиме работы каждый тиристор находится в проводя­щем состоянии от 0 до 120° за период. В любое время два тиристора в этой схеме находятся в проводящем состоянии, и два из трех нагрузоч­ных резисторов являются потребителями мощности. Когда тиристор из нечетной группы находится в проводящем состоянии, соответствующее ему фазовое напряжение - положительное. Если же в проводящем состоянии находится тиристор из четной группы, соответствующее ему фазовое напряжение отрицательное. Фазовые напряжения здесь представляют собой 120-градусные псевдопрямоугольные последова­тельности импульсов. Выходные линейные напряжения имеют формы шестиступенчатых последовательностей импульсов, сдвинутых на 120° по отношению друг к другу. Формы фазовых и линейных напряжений приведены на рис.8б.

Запуск тиристоров в этой схеме осуществляется в последователь­ности 61-12-23-34-45-56. Выходная частота определяется частотой запуска тиристоров.


Рис.8а -  120-градусный режим работы инвертора Схема трехфазного мостового инвертора


Рис.8б - 120-градусный режим работы инвертора Формы фазовых и

линейных напряжений


1.6.2 -  180-градусный режим работы

При 180-градусном режиме каждый тиристор находится в состоянии проводимости половину периода. В этом режиме работы инвертора воз­можны два способа коммутации тиристоров - два тиристора из нечетной группы и один тиристор из четной группы или два из четной группы и один из нечетной группы находятся в проводящем состоянии.

Фазовое напряжение инвертора будет положительным, если ти­ристоры из нечетной группы находятся в проводящем состоянии, и отрицательным, если тиристоры четной группы находятся в проводящем состоянии. В любое время два нагрузочных резистора подключены к источнику питания параллельно, а третий подключен последователь­но к ним. На двух параллельно соединенных резисторах выходное напряжение будет V/3, а на третьем - 2 К/3.


Рис. 9 -  180-градусныи режим работы инвертора

а) Схема трехфазного мостового инвертора,

б) Формы фазовых и линейных напряжений


Линейные напряжения здесь представляют собой 120-градусные псевдопрямоугольные последова­тельности импульсов. Выходные фазовые напряжения инвертора имеют формы шестиступенчатых последовательностей импульсов, сдвинутых на 120° по отношению друг к другу. Формы фазовых и линейных напря­жений приведены на рис.9б. Тиристоры в этой схеме запускаются в последовательности 561-612-123-234-345-456. Выходная частота определяется частотой запуска тиристоров.

1.7  Трехфазный инвертор тока


Электрическая схема и рабочие фазы трехфазного инвертора тока изображены на рис.10. Этот тип инвертора называется инвертором К. Фи­липса. Его работа основана на коммутировании напряжения. Большая индуктивность, включенная последовательно с источником напряжения, работает как источник тока. Схема работает в 120-градусном режиме.


Рис.10а -  Схема трехфазного инвертора тока


Чтобы выключить шесть тиристоров, требуются шесть конденсато­ров. Диоды D1 - D6 предотвращают разряд конденсаторов через нагрузку. Эти диоды называются изолирующими. Тиристоры в этой схеме запуска­ются в последовательности 12-23-34-45-56-61. Если схема переходит из состояния 12 в состояние 23, тиристор Т2 продолжает оставаться в проводящем состоянии, следовательно, тиристор Т2, запирается, а ток продолжает протекать через включенный тиристор Т2.

Фаза I. Конденсатор С, заряжен с левой стороны до напряжения +ve, а с правой - до напряжения -ve. Тиристоры  Т1 и Т2 запускаются согласно диаграмме 120-градусного режима работы. Схема остается в этом состоянии от 0 до 60°.

Фаза П. В следующий 60-градусный интервал тиристоры Т1 и Т2 должны находиться в проводящем состоянии. Тиристор Т1 запускается начиная с 60-градусного интервала. Тиристор Т1, выключается ком­мутирующим напряжением. Ток протекает через D1 фазу А и фазу С. Напряжение на конденсаторе С, меняет полярность.


Фаза III. Диод D1 продолжает оставаться в проводящем состоянии до тех пор, пока ток через него протекает в том же самом направлении. Диод D3 находится в проводящем состоянии, так как он смещен в пря­мом направлении присутствующим на конденсаторе С, напряжением. В этой фазе все три ветви нагрузки являются потребителями мощности. Эта фаза называется периодом перекрытия.


Рис.10б -  Фазы работы схемы


Фаза IV. Диод D1 находится в проводящем состоянии до тех пор, пока энергия, запасенная на индуктивности нагрузки в фазе А, не уменьшится до нуля. Далее ток протекает через тиристоры Т2 и Т3 согласно диаграмме управления при 120-градусном режиме работы инвертора.

Формы фазовых токов трехфазного инвертора тока эквивалентны формам фазовых напряжений трехфазного инвертора напряжения при 120-градусном режиме работы.


1.8  Управление выходным напряжением инвертора

Выходным напряжением инвертора требуется управлять в таких устройс­твах, как регулятор скорости, источники бесперебойного питания и

т. д.

Управлять выходным напряжением можно тремя способами:

1) регулированием входного напряжения инвертора;

2) регулированием выходного напряжения инвертора;

3) регулированием выходного напряжения самим инвертором.

 Входное напряжение можно регулировать с помощью фазоуправляемого преобразователя или коммутатора, включенного на входе инвертора. Недостатком фазоуправляемого преобразователя является низкий коэффициент мощности со стороны входа инвертора. Недостат­ком коммутатора постоянного тока являются высокие коммутационные потери.

Выходное переменное напряжение инвертора можно регулировать с помощью трансформатора с коммутируемыми отводами от вторичной обмотки. Недостатком коммутации отводов является необходимость в обслуживании размыкателей.

Регулирование выходного напряжения самим инвертором называ­ется широтно-импульсной модуляцией. Различают два типа широтно-импульсных модуляторов:

1) однократные;

2) многократные.


1.8.1 Однократный широтно-импульсный модулятор

Электрическая схема инвертора и формы сигналов однократного широтно-импульсного модулятора изображены на рис.11. Однократный широтно-импульсный модулятор вырабатывает один управляющий импульс за полупериод цикла преобразования. Выходное напряжение инвертора регулируется за счет изменения длительности управляющего импульса в каждом полупериоде цикла преобразования. Эпюры управ­ляющих импульсов однократного широтно-импульсного модулятора изображены на Рис.11б. На выходе инвертора присутствует напряжение, только если транзисторы Т1 и Т2 (или) Т3 и Т4 находятся в проводящем состоянии одновременно.


В промежутке времени от t0 до t1 в проводящем состоянии находятся транзисторы  Т1 и Т1.  В это время на нагрузке положительное напряже­ние. В промежутке времени от t2 до t3 проводящем состоянии находятся транзисторы Т3 и Т4, на нагрузке при этом отрицательное напряжение. Выходным напряжением инвертора можно управлять, изменяя угол 9. Чем больше значение 9, тем меньше выходное напряжение инверто­ра, и наоборот. Недостатком этого способа регулирования является присутствие в выходном напряжении большого количества высших гармоник.


Рис.11 -   а) Схема мостового инвертора;

б) Формы сигналов широтно-импульсного модулятора

1.8.2  Многократный широтно-импульсный модулятор

Многократный широтно-импульсный модулятор вырабатывает серию управляющих импульсов за полупериод цикла преобразования. Сущест­вуют два типа многократных широтно-импульсный модуляторов: а) ши­ротно-импульсный модулятор с равными длительностями управляющих импульсов и б) синусоидальный широтно-импульсный модулятор.

Широтно-импульсный модулятор с равными длительностями управляющих импульсов

Формы сигналов симметричного широтно-импульсного модулятора или широтно-импульсного модулятора с равными длительностями управляющих импульсов изображены на рис.12а. Допустим, что V1 -напряжение треугольной формы, Vc - управляющее напряжение и Vo - выходное напряжение компаратора


Рис.12а -  Формы сигналов симметричного широтно-импульсного модулятора


В схеме управления опорное напряжение высокой частоты VT (треу­гольной формы) сравнивается с напряжением управления Vc. Выходное напряжение компаратора Vo высокое, когда больше Vc, и низкое, если Кт меньше Vc. Таким образом, выходное напряжение компаратора пред­ставляет собой последовательность импульсов. Сформированные таким образом импульсы можно использовать для управления мощными тран­зисторами. Если в инверторе используются тиристоры (инвертор Мак-Мюррея), основной тиристор запускается передним фронтом импульса, а вспомогательный тиристор - задним. Таким образом, многократный широтно-импульсный модулятор вырабатывает серию управляющих им­пульсов за полупериод цикла преобразования. Гармонические составля­ющие в выходном напряжении такого инвертора будут намного меньше, чем в инверторе с однократным широтно-импульсным модулятором.

Синусоидальный широтно-импульсный модулятор

Формы сигналов синусоидального широтно-импульсного модулятора изображены на рис.12б. В этой схеме напряжение треугольной формы сравнивается с синусоидальным управляющим напряжением. Входные напряжения компаратора Vc и VT. Выходное напряжение компаратора высокое, когда величина синусоидального управляющего напряжения больше, чем величина напряжения треугольной формы. Отношение ве­личины управляющего напряжения к величине напряжения треугольной формы определяется как коэффициент модуляции. Следует заметить, что выходное напряжение компаратора представляет собой последователь­ность импульсов неравной длительности. В течение полупериода цикла преобразования длительность центрального импульса максимальна, а длительность крайних импульсов уменьшается. Длительность управ­ляющих импульсов изменяется синусоидально. Этот тип широтно-импульсного модулятора называется асимметричным, так как длительности его управляющих импульсов неравны. Гармонические составляющие в выходном напряжении такого инвертора будут меньше, чем в инверторе с симметричным широтно-импульсным модулятором.


Рис.12б -  Формы сигналов синусоидального широтно-импульсного модулятора


1.9 Управление гармоническими составляющими (управление формой напряжения)

Формы выходных напряжений инверторов могут быть прямоугольными, квазипрямоугольными, треугольными или в виде шестиступенчатых последовательностей импульсов. В выходном напряжении содержатся основная гармоника и ее высшие компоненты. Если инвертор исполь­зуется в качестве источника питания асинхронного электродвигателя, высшие гармоники питающего напряжения вносят потери в виде допол­нительного выделения тепла. Например, пятая гармоника питающего электродвигатель напряжения производит крутящий момент в противо­положном направлении по отношению к основному крутящему моменту. Поэтому предпочтительно минимизировать коэффициент гармоник в выходном напряжении. Методы уменьшения гармоник следующие:

1)коммутация промежуточных отводов в трансформаторе;

2)подключение нагрузки через трансформатор;

3)использование фильтров;

4)использование широтно-импульсной модуляции.


1.9.1 Коммутация промежуточных отводов в трансформаторе

        Электрическая схема инвертора с коммутацией промежуточных отво­дов в трансформаторе изображена на рис.13а. Схема этого инвертора похожа на схему параллельного инвертора. Когда один из тиристоров слева находится в проводящем состоянии, выходное напряжение инвер­тора -положительное, если же один из тиристоров справа находится в проводящем состоянии, выходное напряжение - отрицательное. Когда тиристор 1 запускается, напряжение источника питания прикладывает­ся к половине первичной обмотки трансформатора. Выходное напря­жение инвертора в этом случае минимальное, поскольку отношение «вольт/виток» минимальное.



Рис.13а -  Электрическая схема инвертора с коммутацией промежуточ­ных отводов в трансформаторе


В следующий момент времени запускается тиристор 2, а тиристор 1 выключается. Отношение «вольт/виток» увеличивается, и выходное напряжение инвертора также увеличивается. После запуска тиристора 3 тиристор 2 выключается, выходное напряжение инвертора становится максимальным. Для получения двенадцатиступенчатой формы выходного напряжения тиристоры должны запускаться в последовательности 1-2-3-2-1-1А-2А-ЗА-2А-1А. Недостатком этой схемы является сложность запуска и коммутирования тиристоров.


1.9.2  Подключение через трансформатор

Схема компенсации гармонических составляющих с помощью двух трансформаторов изображена на рис.13б. Выходное напряжение в этой схеме является векторной суммой выходных напряжений двух инверторов. Этот метод применяется для компенсации конкретной гармонической составляющей в выходном напряжении (избирательное устранение гармоник). Вторичные обмотки этих двух трансформаторов включены последовательно таким образом, чтобы V1 + V2 = Vo. Запуск тиристоров второго инвертора запаздывает на угол θ по отношения к запуску тиристоров первого инвертора. Форма выходного напряжения V0 может быть получена суммированием напряжений  V1 и V2. Форма выходного напряжения представляет собой 120-градусные квазипря­моугольные импульсы. На рис.13в показаны векторные диаграммы основных и третьих гармоник выходных напряжений инверторов при угле запаздывании 0 = 60°.

Страницы: 1, 2, 3, 4


реферат скачать
НОВОСТИ реферат скачать
реферат скачать
ВХОД реферат скачать
Логин:
Пароль:
регистрация
забыли пароль?

реферат скачать    
реферат скачать
ТЕГИ реферат скачать

Рефераты бесплатно, курсовые, дипломы, научные работы, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.