реферат скачать
 
Главная | Карта сайта
реферат скачать
РАЗДЕЛЫ

реферат скачать
ПАРТНЕРЫ

реферат скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат скачать
ПОИСК
Введите фамилию автора:


Приборы для измерения температуры

Обычно сравнивают интенсивности излучения на двух длинах волн в пределах видимого спектра, например, интенсивность излу­чения  красных лучей при длине волны  = 0,65 мк с интенсив­ностью  синих лучей при длине волны =0,45 мк или зелёных лучей при длине волны  = 0,55 мк. Отношение интенсивно­стей излучения вполне определенно характеризует температуру (см. табл. 7 и рис. 9). По мере повышения температуры производная dA/dT (рис. 12) приближается к нулю, и измерение температуры по отношению интенсивностей становится в видимом спектре излу­чения практически невозможным. Это связано с перемещением при высоких температурах максимума ин­тенсивностей излучения на участок видимого спектра. Напри­мер, для температуры Т= 5000°С мак­симум интенсивности излучения будет приходиться  на лучи длиной.

Рис. 12.  Зависимости отно­шения  спектральных   интенсивностей   излучения   А   от температуры: 1 — красно-зеленое;    2 — красно-синее

При сверхвысоких температурах, когда максимум интенсивностей излу­чения сместится в сторону волн, коро­че волн видимого спектра, принци­пиально возможно измерять темпера­туру таким же путем: по отношению интенсивностей излучения красных лучей к синим или красных лучей к зеленым. Можно определять цвето­вую температуру и в области инфра- красного излучения при условии, что максимум интенсивности из­лучения будет располагаться на более коротких волнах.

Действительную температуру ТД реального тела можно опреде­лить по цветовой температуре Тц, если известны монохроматические коэффициенты черноты  и  для длин волн и , принятых при определении цветовой температуры.

По определению понятия цветовая температура можно напи­сать:

 (25)

Отсюда

 (26)

Из этого уравнения можно сделать вывод, что если = Тц =ТД. Если >, то при  >температура Тц < ТД, а при  <  —температура Тц > ТД.

Если проводить цветовые измерения температуры на участке видимого спектра, то монохроматические коэффициенты черноты будут мало отличаться друг от друга и разность между температу­рами Тц и ТД будет очень невелика.


ПИРОМЕТРЫ

 Яркостные (оптические) пирометры

Измерение яркостной температуры тела осуществляется путем сравнения интенсивности излучения волн определенной длины измеряемого тела и регулируемого источника света, яркостная температура которого известна. В качестве чувствительного эле­мента, определяющего совпадение интенсивностей излучения, слу­жит обычно глаз человека.

Для выделения узкой спектральной области излучения приме­няются светофильтры. Узкую полосу пропускания можно получить с помощью сложной спектральной аппаратуры. В технических измерениях обычно применяют стеклянные светофильтры, имеющие широкую полосу пропускания. Это дает возможность использовать их лишь вблизи края видимого спектра, в области красных лучей.

Глаз человека обладает различной спектральной чувствитель­ностью. Максимум чувствительности приходится на волны длиной  = 0,555 мк. Относительная видность  среднего глаза показана на рис. 13, кривая 1. Граница пропускания одного из стеклянных

Рис.  13. Относительная    видность  среднего глаза человека и кривые пропускания  красного светофильтра.

красных светофильтров показана кривой 2 пропускания  . Фильтр с коэффициентом пропускания  пропускает длинные волны. Таким образом, при наличии фильтра глаз может воспринять излу­чение, отвечающее области, показанной площадкой абв (рис. 10). Изменение излучений в этой области можно приравнять к измене­нию интенсивности излучения узкого спектрального участка неко­торой эффективной длины волны, по которой и вычисляется яркостная температура. Однако при изменении температуры фильтра кривая пропускания смещается. Пунктирной линией 3 показана кривая пропускания при изменении температуры от 20 до 80°С. Очевидно, что при этом изменится и эффективная длина волны . По ГОСТ 8335—67 красные светофильтры подбираются с такими зависимостями = f(), чтобы  = 0,65 ±0,01 мк на всем диапазоне измерений при температуре окружающей среды 20±5°С.

В Советском Союзе большое распространение получили оптиче­ские пирометры с исчезающей нитью. В таких   пирометрах  интен­сивность излучения тела на  длинах   волн   = 0,65   мк сравни­вается с интенсивностью  излуче­ния нити электрической (пиромет­рической) лампы накаливания на тех же длинах волн. Нить лампы проектируется на фоне раскален­ного тела. Нить, нагретая меньше,

Рис. 14. Нить пирометрической   лампы на  фоне раскаленного  тела   при   температурах  нити: а — ниже   температуры     раскаленного   тела;    б — равной  температуре раскаленного  тела;   в — выше температуры    раскаленного   тела


Рис. 14. Схема оптического пирометра  с исчезающей нитью пере­менного накала

чем раскаленное тело, будет казаться темной на светлом фоне (рис. 14,а). Нить, нагретая более, чем раскаленное тело, будет светлее фона (рис. 14,в). При равенстве яркостных температур нити и тела средняя часть нити исчезнет на фоне раскаленного тела (рис.. 14,б).

Уравнивание  яркостей достигается обычно изменением силы тока в лампе. Встречаются конструкции пирометров, у которых уравнива­ние яркостей осуществляется при постоянном накале лампы за счет ослабления фона раскаленного тела ослабляющим (нейтральным) светофильтром переменной толщины.

Яркостная температура лампы устанавливается предваритель­ной градуировкой в зависимости от силы питающего лампу тока или при постоянной силе тока — от положения ослабляющего свето­фильтра.

Уравнивание яркостей производится через красный светофильтр, выделяющий излучение, эквивалентное расчетной эффективной длине волны .

Схематически оптический пирометр с исчезающей нитью пере­менного накала показан на рис. 15. Пирометрическая  (фотометрическая) лампа 3 питается током от батареи Б. Сила питающего тока  определяется    по   миллиамперметру    mА,   шкала   которого  обычно градуируется в соответствующих градусах яркостной температуры. Сила тока в лампе регулируется реостатом R  с помощью! поворотного кольца 6. Для фокусирования  изображения  измеряемого раскаленного тела с плоскостью нити лампы служит объек­тив 1. Окуляр   4 предназначается   для   корректирования   изобра­жения нити по глазу наблюдателя. Красный светофильтр 5 вклю­чается к моменту отсчета; при предварительной наводке он может быть выключен.

Так как нить лампы во избежание перекаливания нельзя нагре­вать выше 1400°С, то для измерения более высоких температур перед лампой включается ослабляющий (поглощающий) свето­фильтр 2, уменьшающий видимую интенсивность излучения раска­ленного тела. Тогда уравнивание яркостей будет происходить при различных температурах: Т1 — нити лампы и Т2 — измеряемого тела.

При включенном ослабляющем светофильтре силе тока, проте­кающего по нити лампы, будут соответствовать уже другие темпе­ратуры измеряемого тела. Поэтому миллиамперметры имеют обычно две шкалы измерений: без ослабляющего (поглощающего) светофильтра и со светофильтром. Соотношение между температу­рами по этим шкалам определяется величиной А пирометрического ослабления. По уравнению Вина

        (27)

Коэффициент пропускания зависит от длины волны . Для того чтобы сохранить величину А постоянной независимо от колебаний эффективной длины волны , подбирают такие светофильтры, у которых произведение ∙ сохраняется постоянным для волн вблизи =0,65 мк. Это позволяет выдержать требование ГОСТ 8335—67 в том, чтобы величина А пирометрического ослабления не изменялась более, чем на 1∙10-6 град-1 на всем интервале измеряемых темпе­ратур.


 Радиационные пирометры

Радиационные пирометры (суммарного излучения) определяют температуру тела по плотности интегрального излучения лучей всех длин волн, теоретически от  = 0 до = ∞. Практически оптическая система радиационных пирометров обычно ограничивает пропуска­ние длинных волн. У стекла коэффициент пропускания волн резко уменьшается при ≈2,5 мк, достигая нулевого значения для ≥3 мк. Оптический кварц нормально пропускает волны длиной ≈3,5 мк, после чего коэффициент пропускания волн снижается, достигая нуля для ≥4,2 мк. При измерениях низких температур порядка 100°С, когда интенсивность излучения коротких волн (<1,0—1,5 мк) становится ничтожно малой и интеграль­ное излучение определяется длинноволновой частью спектра, при­меняют для оптических систем другие материалы, например синте­тический фтористый литий. Последний при толщине 2 мм имеет границу пропускания ≈9 мк. Очевидно, что в таких условиях пирометры строго не подчиняются закону Стефана—Больцмана.

Приемник интегрального излучения должен быть практически чувствительным ко всем длинам волн измеряемого участка спектра и выполняется обычно в форме тонкой металлической пластинки, покрытой сажей. Температура пластинки устанавливается в резуль­тате теплового равновесия между подводимым потоком лучистой энергии и теплоотводом от пластинки в окружающую среду.

Температура пластинки обычно измеряется несколькими последова­тельно соединенными термопарами (термобатареей).

Рис. 16. Схема приемника из­лучения    с    термобатареей    из шести термопар


На рис. 16 показана схема приемника излучения с термобата­реей из шести термопар. Рабочие концы термопар 2 расклепыва­ются в форме Отдельных тонких секторов 4, зачерняются и распо­лагаются в виде венчика. Поток лу­чистой энергии воспринимается пло­щадью, диаметром, несколько большим диаметра зачерненных сек­торов. Свободные концы термопар привариваются к тонким металличе­ским пластинкам 1, прикрепленным к слюдяному кольцу 3 и находятся вне зоны лучистого потока. Слюдя­ное кольцо зажимается в металли­ческом корпусе. Температура сво­бодных концов термопар близка к температуре корпуса. В современ­ных радиационных пирометрах типа «Рапир» приемник излучения состо­ит из десяти термопар, собранных по схеме, изображенной на рис. 16. Металлический корпус с прием­ником излучения, оптической систе­мой и другими дополнительными устройствами называют телеско­пом радиационного пирометра.

В старых конструкциях радиационных пирометров приемник излучения вме­сте с термопарами помещался в стеклянном баллончике, наполненном воздухом или инертным газом, и имел вид электрической лампочки. Температура свобод­ных концов термопар в этом случае уже заметно отличалась от температуры корпуса телескопа.

Иногда в качестве приемника излучения применяют болометры. Болометры представляют собой миниатюрные металлические или полупроводниковые пла­стинки, покрытые металлической чернью или сажей и меняющие свое электриче­ское сопротивление при нагревании лучистым потоком. Болометры могут воспри­нимать излучение волн практически всех длин.

  Можно, в принципе, использовать и любые другие теплочувствительные эле­менты.

Оптическая система телескопа предназначается для концент­рации измеряемого потока лучистой энергии на приемнике излу­чения. Существуют две разновидности оптических систем: рефракторная-преломляющая (с линзой) и рефлекторная-отражающая (с собирательным зеркалом).

Рефракторные оптические системы (рис. 17, а) концентрируют лучистый поток после линзы 1 и диафрагмы 2 внутри конуса с уг­лом . Рабочая часть приемника излучения 3 лежит внутри конуса. Для наводки на измеряемое тело служит окуляр 4, закрываемый для защиты глаза красным или дымчатым светофильтром 5. Патру­бок 6 используется для вывода проводов от термобатареи.

Рефракторные системы ограничивают пропускание длинных, волн (за счет линз). Это вызывает значительные отклонения от закона Стефана—Больцмана и от вычисляемых на основании этого закона разностей между действительной и радиационной тем­пературой. Градуировка рефракторных пирометров, по суще­ству, получается эмпирической, не связанной строго с законами излучения.

Рис. 17. Схемы телескопов радиационных пирометров: а — с рефракторной   оптической   системой;   б — с  рефлекторной   оптической   систе­мой

Рефлекторные оптические системы (рис. 17,б) концентрируют лучистый поток с помощью вогнутого стального позолоченного зер­кала 7. Концентрированный лучистый поток попадает на приемник излучения 3 со стороны, противоположной положению измеряемого тела относительно телескопа. Наводка на измеряемое тело осущест­вляется с помощью окуляра 4 со светофильтром 5 через отверстие в центре зеркала.

Рефлекторные системы не имеют постоянных промежуточных источников поглощения между измеряемым телом и приемником излучения. Позолоченные поверхности зеркала почти полностью отражают лучи всех длин волн, начиная от ≈0,5 мк. При изме­рениях относительно низких температур, когда излучение коротких волн ничтожно мало, рефлекторные системы почти полностью соот­ветствуют закономерностям Стефана—Больцмана.

К сожалению, в эксплуатации открытые поверхности зеркал оказываются неудобными из-за их загрязнения и потускнения. Применение защитных стекол сводит на нет достоинства рефлекторных систем. Поэтому рефлекторные системы используют лишь при бес­контактных измерениях низких температур, когда максимум излу­чения значительно смещается в сторону длинных волн.

Точность измерения радиационными пирометрами всех конст­рукций существенно зависит от температуры внешней поверхности телескопа. При постоянной температуре измеряемого тела и, следо­вательно, постоянной температуре t приемника излучения, термо-э.д.с. термобатареи изменится, если возникнут изменения темпера­туры телескопа и в связи с этим изменится температура свободных концов термопар t0.

Для компенсации температуры свободных концов t0 термопар в пирометрах, серийно изготовляемых в СССР, применяют два метода. По первому методу шунтируют термобатарею сопротивле­нием Rш из никелевой или медной проволоки. Для этого сопротив­ление устанавливают в корпусе телескопа так, чтобы температуры свободных концов термопар и сопротивления Rш были практически одинаковыми. Этим создается замкнутая цепь (рис. 15), в которой устанавливается ток

где Е- термо-э. д. с., развиваемая термобатареей;

RT — сопротивление термобатареи,

 Ток i создает на участке ab падение напряжения

 (28)

Так как E=f(Tp), то и =F(Тр ) Величина падения напря­жения  измеряется милливольтметром или потенциометром П, отградуированным в единицах радиационной температуры Тр.

 Рис. 18. Электрическая измерительная схема ра­диационного пирометра


Рис. .19. Схема компенсации температуры сво­бодных концов термопар радиационного пиро­метра с помощью биметаллических пластин: Т — измеряемое  тело:     К — корпус    телескопа     пиро­метра


Если температура свободных концов термопар увеличится, то термо-э.д.с. Е термопар уменьшится. Одновременно увеличится сопротивление Rш, тем самым уменьшая значения знаменателя (28). Можно подобрать такое сопротивление Rш, которое будет компенсировать изменение термо-э.д.с. Е.

По второму методу телескоп снабжается компенсирующим уст­ройством, состоящим из биметаллических пластин и диафрагмиру­ющих заслонок. При увеличении температуры корпуса телескопа, а вместе с ним и температуры свободных концов термобатареи, развиваемая ею термо-э.д.с. уменьшается. Уменьшение термо-э.д.с. компенсируется с помощью биметаллических пластин 2 (рис. 19), которые при повышении температуры корпуса деформируются и раскрывают диафрагмирующие заслонки 1. В результате увели­чивается поток тепловой энергии, поступающей к приемнику излу­чения 3, и повышается температура рабочих концов термопар тер­мобатареи, что и компенсирует увеличение температуры свободных концов.

 Цветовые пирометры

Большинство современных цветовых пирометров, применяемых в промышленности, построено на принципе сравнения интенсив­ности излучения (яркостей) двух узких монохроматических участ­ков видимого спектра. Наибольший интерес представляют собой пирометры, использующие для оценки интенсивностей излучения фотоэлементы, так как это позволяет создать приборы, объективно и непрерывно измеряющие температуры.


Рис. 20. Упрощенная схема цветового пирометра ЦЭП-3

.

Интенсивность излучения каждого из двух участков спектра можно измерять своим фотоэлементом и, сравнивая фототоки от них, определять температуру. Однако с течением времени характе­ристики фотоэлементов изменяются неодинаково, что вносит погрешности в первоначальную градуировку прибора. Поэтому для определения интенсивности излучения обоих участков спектра пра­вильнее использовать один фотоэлемент.

На рис. 20 приведена в упрощенном виде схема цветового пирометра типа ЦЭП-3. Поток излучения от измеряемого тела Т поступает через объектив Об и диафрагму Д к обтюратору О,

вращаемому электрическим двигателем ЭД со скоростью 50 оборо­тов в секунду. На обтюраторе установлены два комплекта цветных стеклянных светофильтров СФ и КФ, пропускающих узкие диапа­зоны длин волн, соответствующих эффективным длинам синих и красных волн. В результате на фотоэлемент Ф поочередно попа­дают лучи то синей, то красной эффективной длины. Образующиеся импульсы фототока разной величины преобразуются в электронном усилителе ЭУ в сигналы, пропорциональные логарифму отношения фототоков — функции значения цветовой температуры.

Синхронный коммутатор СК позволяет усилителю ЭУ различать цвет входного сигнала. Результаты измерения фиксируются авто­матическим потенциометром АП.

Пирометром ЦЭП-3 можно измерять цветовые температуры в интервале 1400—2800°С. Весь этот интервал температур делится на поддиапазоны по 200—300°С, для каждого из которых исполь­зуется свой обтюратор со специально подобранными комплектами цветовых и поглощающих фильтров. Шкала пирометров ЦЭП-3 условная. Для перевода на цветовую температуру пользуются спе­циальными графиками для каждого поддиапазона измерения.

Допустимая погрешность и вариация показаний не должны пре­вышать 1 % от верхнего предела измерения соответствующего под­диапазона. В процессе эксплуатации за счет постепенного измене­ния спектральной чувствительности фотоэлемента, связанной с его старением, градуировка прибора изменяется, и необходимо при­мерно через каждые 30 суток ее корректировать. Поэтому при оценке погрешности измерения надо учитывать дополнительно величину погрешности образцовых или контрольных ламп, по кото­рым градуируется и поверяется пирометр.

Для снижения необратимых изменений характеристики фото­элемента последний помещают в термостат, тепловой режим кото­рого стабилизируется проточной водой.

 

Рис.21. Схема визуального цветового пирометра с применением люминофора

Из большого числа предложенных визуаль­ных цветовых пирометров простых конструкций интересен пирометр с использованием люминофо­ров. Люминофоры, например, цинк-кадмий-суль­фитные, обладают способностью трансформировать излучение одной области спектра в эквивалентное излучение другой области, в частности, синей в оранжево-красную.

На рис. 21 показана схема визуального люминофорного цветового пирометра. Поток излучения проходит через красный КФ и параллельно через синий СФ светофильтр, выделяющие соответствующие узкие области излучения. Синий участок спектра попадает на люминофор Л и преобразуется в оранжево-красное излучение. Красный участок спектра может ослабляться оптическим клином ОК. Процесс измерения температуры сводится к уравниванию на молочном стекле М.С с помощью клина ОК преобразованного синего излучения с ослабленным красным. Температуру отсчитывают по шкале, связанной с положением' клина. Погрешность 'измерения составляет примерно 30°С при температуре 2500 К. Нижний предел измерения при­близительно равен 2000 К.

За рубежом распространены портативные визуальные цветовые пирометры сравнительно небольшой точности измерения. Применяя эти термометры, всегда ограничиваются отсчитываемой цветовой температурой, не производя никаких пересчетов на действи­тельную.


Список литературы:

1 С.Ф.Чистяков ,Д.В.Радун «Технические измерения и приборы», М.: «Высшая школа» 1972

2 О.М.Блинов, А.М.Беленький, В.Ф.Бердышев «Теплотехнические измерения и приборы», М.: «Металлургия» 1993

3 А.И.Сергеев, «Методические указания к лабораторным работам по дисциплине «Метрология, стандартизация и сертификация»», Магнитогорск:МГТУ, 1999.



Страницы: 1, 2, 3, 4, 5


реферат скачать
НОВОСТИ реферат скачать
реферат скачать
ВХОД реферат скачать
Логин:
Пароль:
регистрация
забыли пароль?

реферат скачать    
реферат скачать
ТЕГИ реферат скачать

Рефераты бесплатно, курсовые, дипломы, научные работы, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.