реферат скачать
 
Главная | Карта сайта
реферат скачать
РАЗДЕЛЫ

реферат скачать
ПАРТНЕРЫ

реферат скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат скачать
ПОИСК
Введите фамилию автора:


Физико-химические процессы водоподготовки


Импеллерная флотация

Флотаторы импеллерного типа применяют для очистки сточных вод нефтяных предприятий от нефти, нефтепродуктов и жиров. Их также можно использовать для очистки сточных вод других предприятий. Данный способ очистки в промышленности применяют редко из-за его небольшой эффективности, высокой турбулентности потоков во флотационной камере, приводящей к разрушению хлопьевидных частиц, и необходимости применять поверхностно-активные вещества.

Сущность этого процесса заключается в диспергировании воздуха в воде с помощью механической мешалки (импеллера). Импеллер, установленный на дне флотационной камеры, приводится в движение от электродвигателя, который расположен выше уровня воды во флотаторе. При вращении импеллера образуется зона пониженного давления и через центральную трубу на его лопатки попадает воздух. Одновременно через отверстия на лопасти импеллера поступает небольшое количество воды, которая перемешивается с воздухом и выбрасывается через боковые отверстия во флотационную камеру, где пузырьки воздуха прилипают к частицам и флотируют их на поверхность воды.

 Степень измельчения пузырьков воздуха зависит от окружной скорости импеллера. Для экономичного расходования электроэнергии и полного использования объема камеры флотатора диаметр импеллеров крупных флотационных машин редко превышает 750 мм, что обусловливает установку большого числа флотационных камер. Это в свою очередь усложняет технологическую обвязку и удорожает эксплуатационные расходы. Импеллерные флотаторы целесообразно применять при очистке с высокой концентрацией (выше 2000-3000 мг/л) нерастворенных загрязнений, т.е. когда для флотации требуется высокая степень насыщения воздухом сточной воды (0,1-0,5 объема воздуха на один объем воды).

Преимущество таких машин заключается в полной имитации процесса и возможности быстрого получения предварительных данных для расчета флотатора.


Флотация с подачей воздуха через пористые материалы


Для получения пузырьков воздуха небольших размеров можно использовать пористые материалы, которые должны иметь достаточное расстояние между отверстиями, чтобы не допустить срастания пузырьков воздуха над поверхностью материала. На размер пузырька большое влияние оказывает скорость истечения воздуха из отверстия. Для получения микропузырьков необходима относительно небольшая скорость истечения.

Преимущество такой флотации заключается в простоте конструкции установки и уменьшении затрат электроэнергии. Недостатки этого метода - засорение пор, разрушение пористого материала (керамики), а также трудности, связанные с подбором мелкопористых материалов, обеспечивающих постоянство во времени определенного размера пузырьков воздуха.

В зависимости от количества сточной жидкости применяют вертикальные и горизонтальные флотаторы. Вертикальные флотаторы небольшой производительности могут быть поточными и противоточными.

В противоточном флотаторе сточная жидкость по трубопроводу подается в верхнюю часть флотатора, представляющего собой цилиндр высотой 2-4 м. В нижнюю часть флотатора закачивается воздух. Последний поступает в поддон, а оттуда через отверстия керамических колпачков, которые закреплены на поддоне, во флотационную камеру. Здесь пузырьки воздуха движутся снизу вверх, а сточная вода - сверху вниз и из нижней части флотатора отводится по трубопроводу и регулятор уровня из флотатора. Образовавшаяся во флотаторе пена отводится с помощью желоба и шламоотводящей трубы за пределы флотатора.

Для очистки больших количеств сточных вод применяют горизонтальные флотаторы. Воздух во флотационную камеру поступает через мелкопористые фильтросы, уложенные на дне. Сточная вода подается в верхнюю часть флотационной камеры, а отводится из нижней через регулятор уровня. В этом случае пузырьки воздуха движутся вверх вместе с потоком воды. Время пребывания воды во флотаторе определяется из условия максимального отделения загрязнений из сточной воды и возможности всплытия пены на ее поверхности.

Габариты флотаторов зависят от их производительности, размера воздушных отверстий, давления воздуха под фильтросами, уровня воды и др.


Электрофлотация


В настояще время на станциях очистки широко используют электрофлотацию, так как протекающие при этом электрохимические процессы обеспечивают дополнительное обеззараживание сточных вод. Кроме того, применение для электрофлотации алюминиевых или стальных электродов обусловливает переход ионов алюминия или железа в раствор, что способствует коагулированию мельчайших частиц механических примесей сточной воды.

Сточная жидкость при пропускании через нее постоянного электрического тока насыщается пузырьками водорода, образующегося на катоде. Электрический ток, проходящий через сточную воду, изменяет химический состав жидкости, свойства и состояние нерастворимых примесей. В одних случаях эти изменения положительно влияют на процесс очистки стоков, в других - ими надо управлять, чтобы получить максимальный эффект очистки.

При прохождении воды через межэлектродное пространство протекают такие процессы, как электролиз, поляризация частиц, электрофорез, окислительно-восстановительные реакции, а также реакции между отдельными продуктами электролиза. Интенсивность происходящих процессов зависит от химического состава сточной воды, материала электродов, которые могут быть растворимыми и нерастворимыми, и от параметров электрического тока (напряжение и плотность).

Образование дисперсной газовой фазы в процессе электрофлотации происходит вследствие электролиза воды. Основной составляющей электролизных газов является водород; при этом выделяется незначительное количество кислорода, хлора, оксидов углерода и азота.

При расчете электрофлотатора определяют расход газа, необходимого для обеспечения заданной эффективности очистки,  qг = 100Q(С0 – Ск)6М, где С0 и Ск — концентрации маслопродуктов в исходной и очищенной сточной воде, кг/м3; М — удельная адсорбция маслопродуктов газовой фазой, л/кг. Затем находят силу тока для получения требуемого количества электролизного газа I = qг/aг, где  aг — выход газа по току; aг = 0,0076 дм3 / (л*мин).


       Расход водорода (дм /мин) в смеси электролизного газа


qН2  =22,4 qгaн (aг МН2),


 где (aн — электрохимический эквивалент водорода, aн = 0,627 мг/(А*мин); МН2 — молекулярная масса водорода.

Задают расход воздуха, подаваемого под границу раздела «сточная вода — воздух рабочей зоны» в камере флотации, исходя из соотношения qв3 50 qН2 и определяют суммарный расход газовоздушной смеси, выходящей через открытую поверхность флотатора qсм = qг  + qв. Выбирают удельный расход газовоздушной смеси через поверхность ценообразования w = 300...600 дм3/(м3* мин) и определяют площадь поверхности пенообразования   f = qсм /w.

Определяют объемную плотность тока (А/м3), обеспечивающую необходимую величину газонаполнения  j = (j + 0,261 Кф + 0,1) /(0,022  — 0,011Кф), где j — степень газонаполнения сточной воды в процессе флотации; j = 1...5 дм3/м3; Кф = 0,3...1,2 — коэффициент формы флотационной камеры.

Находят объем и площадь поперечного сечения флотационной камеры V= I/j; F= (Кф)2 и затем ее основные размеры.

Применение растворимых электродов (железных или алюминиевых) вызывает анодное растворение металла. В результате этого процесса в воду переходят катионы железа или алюминия, которые, встречаясь с гидроксильными группами, образуют Al2O3, Al(OH)3 или Fe2O3, Fe(OH)3, являющиеся распространенными в практике обработки водой коагулянтами. Одновременное образование хлопьев коагулянта и пузырьков газа в стесненных условиях межэлектродного пространства создает предпосылки для надежного закрепления газовых пузырьков на хлопьях, интенсивной коагуляции загрязнений, энергичного протекания процессов сорбции, адгезии и, как следствие, более эффективной флотации.

Коагуляция загрязнений в межэлектродном пространстве может происходить не только за счет растворения анода, но и в результате электрофизических явлений, разряда заряженных частиц на электродах, образования в растворе веществ (хлора и кислорода), разрушающих сольватные оболочки на поверхности частиц. Эти процессы особенно выявляются в случае применения нерастворимых электродов.

Выбор материала электродов может быть увязан с агрегативной устойчивостью частиц загрязнений в сточной жидкости. Материал и геометрические параметры электродов влияют на размер пузырьков газа. Замена пластинчатых электродов на проволочную сетку приводит к уменьшению крупности пузырьков и, следовательно, к повышению эффективности очистки воды.


Ионный обмен.

ИОННЫЙ ОБМЕН - это обратимая химическая реакция, при которой происходит обмен ионами между твердым веществом (ионитом) и раствором электролита.

В водоподготовке ионный обмен применяют для умягчения, обессоливания воды, селективного удаления различных ионов и т.д.

ИОНИТЫ (ионообменники, ионообменные сорбенты), полимерные в-ва и материалы, содержащие ионогенные и (или) комплексообразующие группы, способные к обмену ионов при контакте с р-рами электролитов. Большинство ионитов - твердые нерастворимые полиэлектролиты аморфной или кристаллич. структуры. Ионогенные группы закреплены на мол. каркасе (матрице) и диссоциируют, давая полиионы (фиксир. ионы) и подвижные противоионы, компенсирующие заряды полиионов.

            Принцип действия метода основан на возможности ионитов изменять состав обрабатываемой воды в необходимом направлении. Реакция происходит на поверхности ионита – полимера, в состав которого входят функциональные группы, способные поглощать из раствора ионы определенного заряда в обмен на эквивалентные количества других ионов того же заряда. При этом выбор типа смолы (анионит или катионит) напрямую зависит от состава и качества очищаемой воды.

В общих чертах, метод состоит в прокачивании воды через колонки с ионитом. При этом в формирующейся зоне фильтрации (фронт фильтрации) и происходит реакция ионообмена. Подлежащая очистке вода проходит через один или систему фильтров (колонки), заполненных ионитами, подбираемыми в зависимости от требуемой задачи. Иониты удаляют из воды соответствующие ионы и обмениваются с водой эквивалентными количествами других ионов, которые первоначально находились в ионите. Обменивающиеся ионы называются противоионами. После достижения предела емкости ионита (возникновения проскока поглощаемого иона) колонка требует регенерации.

Иониты состоят из неподвижного каркаса - матрицы и функциональных групп - фиксированных ионов, которые жестко прикреплены к матрице и взаимодействуют с противоионами.

В зависимости от знака заряда противоионов иониты делят на катиониты и аниониты. Если противоионы заряжены положительно, т.е. являются катионами (например, ионы водорода Н+ или ионы металлов), ионит называют катионитом. Если противоионы заряжены отрицательно, т.е. являются анионами (например, ион гидроксила ОН- или кислотные остатки), ионит называют анионитом.

Различают сильно- и слабокислотные катиониты (в Н+- или Na+ - форме) и сильно- и слабоосновные аниониты (в ОН- - или солевой форме), а также иониты смешанного действия.

Ионообменную очистку реализуют последовательным фильтрованием сточной воды через катиониты и аниониты. При контакте сточной воды с катионитом в водородной форме имеет место обмен катионов растворенных в воде солей на Н+ -ионы катионита в соответствии с уравнением реакции


               n[К]Н + Меn+                [К]nМе + nН+


 где К — «скелет» (радикал) катионита; Me — извлекаемый из сточной воды катион металла; n — заряд катиона. При этом имеет место увеличение кислотности сточной воды.

 При контакте сточной воды с анионитом в гидроксильной форм происходит обмен анионов кислот на ОН--ионы анионита в соответствии с уравнением реакции


               m[Аn]ОН + Аm-                    [Аn]mА + mOН-


 где Аn — «скелет» (радикал) анионита; А — извлекаемый из сточной воды анион; m —заряд аниона.

Основными характеристиками ионитов являются: селективность, рабочая обменная емкость и кинетика ионного обмена.

Селективность ионита показывает, насколько эффективно ионит способен удалять те или иные противоионы в присутствии других конкурирующих противоионов. Селективность ионитов определяется природой матрицы ионита, типом функциональных групп, концентрацией противоионов в растворе и т.д. Как правило, селективность ионитов возрастает с увеличением заряда противоиона, а среди ионов с одним и тем же зарядом - с увеличением атомного веса. Т.е., чем тяжелее противоион и чем выше его заряд, тем большую селективность проявляет к нему ионит. Типичный ряд селективности показан ниже:

Na+<K+<Mg2+<Ca2+<Fe 2+<Mn2+<Ba2+<Fe3+

Исключение составляют противоионы, которые образуют малодиссоциирующие соединения с фиксированными группами, например, слабоосновные иониты с анионами слабых кислот (карбонатами), или некоторые цеолиты с аммонием. Кроме того, возможны специфические взаимодействия, основанные на хелатном эффекте или на ситовом эффекте.

Обращение селективности наблюдается при увеличении концентрации раствора. Например, двухзарядные противоионы могут быть вытеснены из ионита однозарядными противоионами при контакте с раствором, содержащим однозарядные противоионы в высокой концентрации. Этим определяется важнейшее свойство ионитов - их способность к регенерации после насыщения ионами, удаляемыми из воды, путем промывки примерно 5-6%-ми растворами кислот (для катионитов) или щелочей (для анионитов) или 10-12%-ыми растворами солей. Именно это свойство позволяет многократно, в течение нескольких лет, использовать загрузку ионитов для очистки воды.

Величина рабочей обменной емкости определяет, как долго может работать ионит в данных условиях до первого проскока поглощаемого иона в фильтрат, а, следовательно, показывает ресурс работы ионита в процессе водоподготовки. Обычно обменную емкость принято выражать в эквивалентах на литр набухшего ионита.

Кинетика ионного обмена определяет скорость протекания ионообменной реакции и, следовательно, требуемую скорость фильтрования. На скорость ионного обмена влияют следующие факторы: доступность фиксированных ионов внутри каркаса ионита, размер гранул ионита, температура, концентрация раствора и т.д.

Общая скорость процесса ионного обмена может быть представлена как совокупность процессов, происходящих в растворе (диффузия противоионов к зерну и от зерна ионита) и в ионите (диффузия противоионов от поверхности к центру зерна ионита и в обратном направлении; обмен противоионов ионита на противоионы из раствора):

В условиях, приближенных к реальным условиям очистки воды, доминирующим фактором, определяющим скорость ионного обмена, является диффузия ионов внутри зерна ионита. Следовательно, скорость ионного обмена, прежде всего, зависит от размера зерна ионита и увеличивается с уменьшением размера зерна.

Следует отметить, что ионообмен, несмотря на эффективность, имеет ряд недостатков, которые снижают ценность технологии в глобальной перспективе.

Во-первых, велики затраты на регенерацию фильтров и досыпку ионитов. Во-вторых, низка экологичность метода из-за образования значительного количества солевых стоков опасной концентрации. Например, для умягчения при жесткости исходной воды 7 мг÷экв/л и расходе умягченной воды 1000 т/ч расход реагентов для регенерации фильтров (NaCl) достигает 30 т/сут. При этом сброс опасных засоленных стоков (в пересчете на твердые соли), который поступает в поверхностные водоемы, также соответствует этой цифре, следовательно, требуются меры по их обезвреживанию. В-третьих, велика вероятность «отравления» ионитов органическими соединениями, растворенными в воде, и, как следствие, снижения эффективности установки. Кроме того, неполярные органические соединения практически не задерживается на колоннах. В результате они попадает в котлы и трубопроводы, вызывая коррозию оборудования.

Преимущества ионного обмена. Основное преимущество умягчения воды с помощью ионного обмена - простота управления процессом. Обычные колебания жесткости сырьевой воды или скорости потока не влияют на эффективность умягчения. Кроме того, система обычно занимает меньшую площадь, чем система умягчения известью и кальцинированной содой, и в большинстве случаев дает более мягкую воду. Использование кислотных обменников обладает преимуществами, когда требуется мягкая вода с низкой щелочностью. Главное преимущество деминерализации при ионном обмене - ее способность производить воду лучшего качества по сравнению с той, которая может быть получена любым другим методом.

 В зависимости от природы матрицы различают неорганические и органические иониты.

НЕОРГАНИЧЕСКИЕ ИОНИТЫ.


Неорганические иониты - это в основном иониты природного происхождения, к которым относятся алюмосиликаты, гидроксиды и соли поливалентных металлов. Наиболее распространенными и применяемыми для очистки воды неорганическими природными ионитами являются цеолиты.

Цеолиты - это минералы из группы водных алюмосиликатов щелочных и щелочноземельных элементов, которые характеризуются наличием трехмерного алюмокремнекислородного каркаса, образующего системы полостей и каналов, в которых расположены щелочные, щелочноземельные катионы и молекулы воды. Общий объем системы полостей и каналов цеолита составляет до 50% объема каркаса цеолита. Катионы и молекулы воды слабо связаны с каркасом и могут быть частично или полностью замещены путем ионного обмена и дегидрации. Ионообменные свойства цеолитов определяются особенностями химического сродства ионов и кристаллической структуры цеолита. При этом необходимо соответствие размеров входных отверстий в цеолитовый каркас и замещающих ионов, т.к. каркас цеолита имеет жесткую кристаллическую структуру и в отличие от органических смол не может набухать с изменением объема.

Ионным обменом на цеолитах удается выделять ионы, извлечение которых другим методом часто представляет большую сложность. Установлена способность цеолитов адсорбировать радиоактивные ионы цезия из растворов, удалять NH4+, извлекать ионы Cu, Pb, Zn, Cd, Ba, Co, Ag и других металлов, очищать природные газы. Ионоситовый эффект позволяет адсорбировать из газовых и жидких систем пары азота, CO2, SO2, H2S, Cl2, NH3. Кроме этого, цеолиты могут быть использованы для удаления растворенного железа, марганца и жесткости.

В отличие от органических смол существует ряд особенностей цеолитов. Так, общая минерализация обрабатываемой воды должна быть не менее 80 мг/л, так как при меньшем содержании солей происходит растворение алюмосиликатного каркаса цеолита. При рН обрабатываемой воды ниже 6 также возрастает вероятность разрушения кристаллической решетки.

Динамическая обменная емкость цеолитов ниже динамической обменной емкости органических смол в тех же условиях, что связано с более медленной кинетикой обмена на цеолитах. Остаточная жесткость воды после цеолитов составляет около 0,3 мг-экв/л, тогда как после органических смол - не более 0,1 мг-экв/л.

Некоторые неорганические иониты:

1.      Гранулированные методом замораживания труднорастворимые фосфаты металлов (циркония, титана, хрома, железа, тория, сурьмы и др.), прежде всего, цирконилфосфат (ZrO)m(H2PO4)n с различным отношением m:n, отличающийся высокой емкостью обмена, термической и радиационной устойчивостью и высокой селективностью к ионам цезия, рубидия, калия и аммония, а также таллия. Цирконилфосфат устойчив в концентрированных кислотных и солевых растворах, сохраняя в них высокую ионообменную емкость и избирательность к вышеуказанным катионам.

Цирконилфосфат может быть использован для извлечения из сильнокислых и сильноминерализованных радиоактивных растворов долгоживущего изотопа 137Cs; для разделения продуктов радиоактивного распада урана в атомных реакторах: 89Sr-137Cs, 89Sr-144Cs, 90Sr-90U; для отделения 95Nb и 95Zr от 106Ru; для извлечения ионов таллия из растворов в производстве и при использовании солей таллия.

2.      Синтетические титано- и цирканосиликаты, обладающие молекулярноситовыми свойствами цеолитового уровня, высокой обменной емкостью и селективностью к ряду катионов.

3.      Труднорастворимый кристаллический оксалат циркония, селективный по отношению к катионам свинца и калия.

4.      Труднорастворимые соли поли- и гетерополикислот: фосфомолибдаты, фосфорвольфраматы, вольфраматы, фосфорарсенаты, производные фосфорносурьмяной кислоты, кремнесурьмяной кислот и другие обладающие селективностью к редким щелочным, щелочноземельным и тяжелым металлам.

5.      Ферроцианиды щелочных и тяжелых металлов (железа, меди, цинка, молибдена, никеля, титана, олова, ванадия, урана, вольфрама и т.п.), способные к избирательной сорбции ионов Pb+, используются для поглощения Rb, Cs из растворов и Tl+ из водных растворов. Например, с помощью ферроцианида щелочного металла и никеля эффективно извлекается рубидий из отработанного раствора при переработке карналлитовых руд.

6.      Нерастворимые сульфиды и гидроксиды металлов. Например, известно о возможности успешной очистки никелевых электролитов от примесей ионов меди, свинца, кадмия, мышьяка, сурьмы, олова, висмута с помощью нерастворимого сульфида никеля, от примесей железа (II) и кобальта (II) с помощью гидроксидов никеля в сочетании с органическим сильноосновным анионитом АВ-17 на конечной стадии очистки.

Многие катиониты, в том числе цеолиты (за исключением клиноптилолита, эрионита и морденита) и глинистые минералы, могут работать только в солевых формах (натриевой, кальциевой и т.д.). Они не могут быть переведены в водородную форму, так как при этом разрушается их структура, и, следовательно, не могут применяться в технологии обессоливания и опреснения сточных и природных вод. Кроме того, обессоливание воды невозможно без одновременного использования анионитов, которые среди неорганических минералов и соединений встречаются весьма редко.

Эти обстоятельства в немалой степени способствовали бурному развитию синтеза органических катионитов и анионитов на основе синтетических органических соединений, получивших широкое применение в технологии обессоливания воды, в гидрометаллургии драгоценных и цветных металлов, в технологии очистки сточных вод и в других отраслях.

ОРГАНИЧЕСКИЕ ИОНИТЫ

Органические иониты - это в основном синтетические ионообменные смолы. Органическая матрица изготавливается путем поликонденсации мономерных органических молекул, таких как стирол, дивинилбензол, акриламид и т.д. В эту матрицу химическим путем вводятся ионогенные группы (фиксированные ионы) кислотного или основного типа. Традиционно вводимыми группами кислотного типа являются -СООН; -SО3Н; -РО4Н2 и т.п., а основного типа: ≡N; =NH; -NH2; -NR3+ и т.п. Современные ионообменные смолы, как правило, обладают высокой обменной ёмкостью и стабильностью в работе.

Иониты способны к набуханию в воде, что обусловлено присутствием гидрофильных фиксированных групп, способных к гидратации. Однако беспредельному набуханию, т.е. растворению, препятствуют поперечные связи. Степень поперечной связанности задается при синтезе ионитов через количество вводимого сшивающего агента - дивинилбензола (ДВБ). Стандартные смолы, используемые для умягчения, содержат 8% ДВБ. Доступные в настоящее время смолы могут содержать от 2 до 20%. В целом степень набухания ионитов определяется количеством сшивки ДВБ, концентрацией гидрофильных ионогенных групп в объеме зерна ионита и тем, какие противоионы находятся в ионите. Обычно однозарядные ионы, особенно ионы водорода и гидроксила, приводят к наибольшему набуханию; многозарядные противоионы приводят к некоторому сжатию и уменьшению объема зерен.

На данный момент ионообменные смолы выпускаются в двух модификациях: гелевые и макропористые.

Гелевые смолы представляют собой гомогенные поперечносвязанные полимеры. Фиксированные ионы равномерно распределены по всему объему полимера. При небольшом содержании сшивки, они обладают высокой обменной емкостью, однако характеризуются невысокой прочностью. При увеличении содержание сшивки повышается прочность, но уменьшается набухание и замедляется скорость обмена.

Макропористые смолы характеризуются фиксированной системой пор и каналов, которая задается во время синтеза, что позволяет вводить большое количество ДВБ для повышения механической устойчивости без замедления кинетики обмена. Однако при этом сокращается обменная емкость, так как доступными для обмена оказываются только фиксированные ионы на стенках пор - это 10-30% всего полимера.

Особого внимания заслуживают монодисперсные смолы, которые в отличие от стандартных полидисперсных смол характеризуются постоянным диаметром гранул с отклонением не более 50 мкм (полидисперсность стандартных смол составляет от 0,3 до 1,2 мм). Монодисперсность обеспечивает увеличение скорости ионного обмена, так как время диффузии ионов во всех гранулах одинаково, что приводит к увеличению рабочей обменной емкости. Кроме того, особый метод синтеза монодисперсных смол обеспечивает увеличение механической прочности.

Большинство органических ионитов получаются путем полимераналогичных превращений сополимеров стирола и дивинилбензола (ДВБ). Эти сополимеры являются надежной базой для создания целого спектра гелевых и макропористых ионитов с самыми разнообразными свойствами. Кроме того, исходные мономеры доступны и относительно дешевы. Все шире становится и ассортимент ионитов, получаемых методами сополимеризации и сополиконденсации органических мономеров ионогенного типа. Успешно развивается синтез важных в практическом отношении ионитов на базе винильных производных пиридина, прежде всего, промышленно доступного 2,5-метилвинилпиридина, на основе алифатических соединений ионогенного характера, таких как метилакрилат, акрилонитрил, полиэтиленполиамины, эпихлоргидрин.

Большинство органических ионитов имеют гелевую структуру. В них отсутствуют реальные поры. Доступность всего объема их зерен для обменивающихся ионов обеспечиваются благодаря их способности к набуханию в водных растворах.

Макропористые иониты получаются путем введения в реакционную массу в процессе сополимеризации и поликонденсации порообразователя (изооктан, декан, бензины БР-1, БЛХ, спирты нормального и изомерного строения), после удаления, которого ионит сохраняет реальные поры и приобретает свойства адсорбентов типа активных углей: большую удельную поверхность и объем пор. Макропористые иониты имеют большую механическую прочность, но меньшую объемную емкость, чем гелевые и изопористые. Они обладают высокой осмотической стабильностью, улучшенной кинетикой обмена, проявляют ситовый эффект.

Возможности синтеза органических ионитов поистине безграничны, а синтезируемые иониты можно наделять разнообразнейшими ценнейшими свойствами, имеющими порой уникальное практическое значение.


Кристаллизация.


Кристаллизационная вода - вода, вовлекаемая в состав соли при ее кристаллизации; в отличие от воды, поглощенной порошковатыми веществами, характеризуется постоянством, при данной температуре, упругости выделяющейся воды, независимо от ее содержания (диссоциации гидрата); в отличие от воды конституционной не способна вступать в реакции двойного обмена.

Большинство предлагаемых методов основано на физико-химическом воздействии на среду (электрические и магнитные поля, ультразвуковые и акустические волны, электрохимические реакции), вследствие чего создаются условия кристаллизации накипеобразующих солей в объеме, а не на теплопередающих поверхностях. 

Указанные выше способы объединяет наличие стадии создания в системе (за счет физико-химического воздействия) центров пресыщения (кристаллизации) и образования   множества микрокристалликов  накипеобразующего вещества  в объеме раствора.

Размер частиц микрокристалликов находится в интервале от 10-7 до 10-4 см. На этой стадии прозрачную сетевую воду, содержащую микрокристаллики накипи, можно характеризовать как высокодисперсный коллоидный раствор.

Частицы высокодисперсных коллоидных растворов проходят через обычные фильтры,  практически не оседают и не видимы в оптический микроскоп. 

На второй стадии (после образования микрочастиц накипеобразующих солей в объеме)  идет укрупнение кристаллов  и  образование суспензии. Эта стадия  растянута во времени от десяти минут до нескольких часов.

При реализации электрохимического способа водоподготовки совмещаются обе стадии. За счет прикатодной электрохимической реакции образуются монокристаллы карбоната кальция, которые служат центрами роста кристаллов накипеобразующих солей  в объеме  раствора.      

В водных растворах на базе монокристаллов карбоната кальция в присутствии  ионов кальция (Са2+) и углекислотных  анионов () образуется агрегат мицеллы вида:  [(mCaCO3) ∙ nCa2+∙ - x ]+, являющейся мельчайшим кристалликом и имеющей положительный заряд. Электрохимические свойства заряженной частицы характеризуются  дзета-потенциалом, который имеет величину (для карбоната кальция) порядка +3 мВ.

Учитывая наличие второй стадии и динамику образования суспензий (размер частиц 10-4–10-2 см и более), электрохимический антинакипной аппарат  устанавливается непосредственно на сетевом трубопроводе, за счет чего осуществляется  электрофильтрация оборотной воды.

При реализации электрохимического способа водоподготовки на энергетических объектах используется аппарат типа АЭ-А-Т ,основными элементами которого являются недеформируемая стальная пластина (катод) и прямоугольный параллелепипед из токопроводящего графитированного материала (анод).

При движении через аппарат с определенной удельной скоростью относительно электродной площади сетевая вода последовательно проходит, меняя направление движения, три секции: зону входа, межэлектродное пространство и зону выхода. Расстояние между анодной и катодной пластинами имеет фиксированную величину. Плотность тока между электродами поддерживается в заданном интервале путем использования блока питания.

Аппарат электрохимической обработки воды обычно устанавливают на обратном сетевом трубопроводе – до сетевых насосов и после врезки трубопровода подпиточной воды. 

 


Байпасное подсоединение аппарата к сети позволяет производить периодическую выгрузку уловленных солей жесткости (2–3 раза за отопительный сезон) без остановки работы котельной. В целом весь процесс чистки занимает 2–3 ч.

При условии поддержания на электродах определенной плотности тока в межэлектродном пространстве основными химическими и электрохимическими реакциями являются:

 

♦ на аноде:

 

     4ОН- - 4е ® 2Н2О + О2                                                                                                           (1)

 

                 (щелочная среда);

 

     2Н2О - 4е ® О2 + 4Н+                                                                                                          (2)

 

    (нейтральная или кислая среда);

 

♦ в прианодной зоне (для графитированного анода):

 

     С + О2 → СО2;                                                                                                                        (3)

 

♦ на катоде:

 

     О2 + 4Н+ + 4ё → 2Н2О

 

      (кислая среда, рН > 4);                                                                                                 (4)

 

     2Н+ + 2ё → Н2

 

             (при рН < 4);                                                                                                          (5)

 

     2Н2О + 4О2 + 4ё → 4ОН-

 

             (нейтральная или щелочная среда);                                                                    (6)

 

♦ в прикатодной зоне:

 

     Са2+ + НСО3- + ОН- → СаСО3↓ + Н2О;                                                                       (7)

 

     Мg2+ + 2ОН- → Мg(ОН)2↓;                                                                                          (8)

 

     Fe2+  + 2ОН- → Fe(ОН)2↓;                                                                                             (9)

 

♦ в межэлектродном пространстве:

 

     Са(НСО3)2 → СаСО3↓ + Н2О + СО2;                                                                           (10)


     СО2 +2Н2О → Н2СО3;                                                                                                   (11)

 

      Н2СО3 ↔ Н+ + НСО3-;                                                                                                 (12)

 


      НСО3- → Н+ + ;                                                                                                    (13)     

 


      Са2+ + → СаСО3↓;                                                                                              (14)

 


      4 Fe(ОН)2 + О2 + Н2О → 4 Fe(ОН)3.                                                                           (15)

 

    За счет электрохимической реакции в прикатодной зоне аппарата образуется высокощелочная среда (рН 10–11), в которой при наличии бикарбонатов кальция  [Са(НСО3)2]  по реакции (7) образуются монокристаллы карбоната кальция, способные выступать в роли центров кристаллизации в объеме. 

Таким образом, электрохимический аппарат, установленный на обратном сетевом трубопроводе, выполняет одновременно две важные функции: одна заключается в улавливании путем электрофильтрации сформировавшихся в объеме положительно заряженных частиц геля и суспензии; вторая – в генерации в ту же систему монокристаллов карбоната кальция, служащих центром образования гелей и суспензии в рабочих объемах теплоагрегатов и теплосети, что препятствует образованию накипи на теплопередающих поверхностях. 

Индикаторным показателем, позволяющим предсказать расчетным путем накипеобразующую и коррозионную активность воды, является индекс насыщения (Iн). Для энергетического объекта значение Iн <  0,3 – вода коррозионно активна, при 0 <  Iн  < 0,5 – величина накипеобразования не превышает нормативных показателей (0,03–0,1  г/м2 ∙ ч), а при   Iн > 0,5 – вода обладает повышенной накипеобразующей способностью.

 

     I – 0,3 < Iн  < 1 (подпиточная вода накипеобразующая);

 

     II – Iн > 1 (подпиточная вода высокой накипеобразующей способности);

 

III – Iн < 0,3 (вода коррозионно-активная).


Диализ.


ДИАЛИЗ (от греч. diálysis — разложение, отделение), удаление из коллоидных систем и растворов высокомолекулярных соединений примесей низкомолекулярных веществ с помощью полупроницаемых мембран, т. е. перегородок, которые пропускают малые молекулы и ионы, но задерживают коллоидные частицы и макромолекулы.

В водоподготовке диализ применяют для удаления кислот или оснований.

 Простейшее устройство для диализа — диализатор — мешочек или гильза из полупроницаемого материала, который заполняют очищаемой (диализуемой) жидкостью и погружают в растворитель (дисперсионную среду). Вместо мешочка часто используют цилиндрический сосуд с полупроницаемой мембраной вместо дна. Мембраны делают из коллодия, целлофана, животных и растительных перепонок, синтетических материалов и др. В основе диализа лежат процессы диффузии, и поэтому он идёт очень медленно. Диализ ускоряется с увеличением отношения площади мембран к объёму диализуемой жидкости, с повышением температуры, перемешиванием, созданием разницы в давлениях по разные стороны мембраны, частой или непрерывной сменой растворителя, в который переходят (диффундируют) через мембрану ионы или молекулы низкомолекулярного вещества.

  Диализ в электрическом поле — электродиализ — в десятки раз ускоряет очистку диализуемых систем от электролитов. Электродиализ – это процесс переноса ионов через мембрану под действием электрического поля, приложенного к мембране. Скорость переноса ионов может изменяться подбором соответствующей силы тока. Такой перенос может осуществляться против градиента концентрации.

 Простой электродиализатор  состоит из трёх камер, отделённых одна от другой мембранами. В среднюю камеру заливают очищаемую жидкость, в боковых проточных камерах расположены электроды, погруженные в растворитель. Ионы в постоянном электрическом поле направленно перемещаются к соответствующим электродам, проникая при этом сквозь мембраны из средней камеры в боковые. Особенно эффективен электродиализ с применением ионитовых мембран, изготовленных из ионообменных материалов. Мембраны в зависимости от знака электрического заряда на их поверхности пропускают преимущественно или катионы, или анионы. Многокамерные электродиализаторы с ионитовыми мембранами применяют в гидрометаллургии и атомной промышленности (для очистки сбросных вод, концентрирования растворов солей, разделения близких по свойствам элементов), при обессоливании морской воды.

Следует отметить, что электродиализ особенно эффективен только после предварительной очистки с помощью обычного диализа, когда скорость диффузии из-за падения градиента концентрации электролитов между золем и водой мала и можно применять электрическое поле большого напряжения, не боясь сильного разогревания золя.

 Электродиализ эффективно используется для опреснения морской воды. Морская вода накачивается между двумя полупроницаемыми мембранами, которые отделяют её от электродов. При пропускании тока через электроды, катионы перемещаются по направлению к катоду, а анионы – по направлению к аноду. Концентрация ионов вблизи электродов, за пределами полупроницаемых мембран, снижается за счёт прокачивания морской воды, а вода в пространстве между мембранами постепенно опресняется. Для работы установки по опреснению морской воды методом электродиализа используется напряжение 500 В и слабые токи порядка миллиампера.


Список источников информации:

Сайты: www.allbest.ru, www.roman.by/r-61266.htm, www.scienmet.ru/water_press.htm, www.xumuk.ru/encyklopedia/786.htm, www.dkvartal.ru/msk/news/16376931, www.xumuk.ru/encuklopedia/213172.htm, www.stroyinform.ru/technolodypage.aspx?bid=24&d=113, www.scienmet.ru/water-flotator.htm, www.erudition.ru/referat/reflid.49935_1.html, www.aqms.ru/russian/technology/ccassical/ion-exchange.html, www.aqua-therm.ru/articles/-40.html, www.xumuk.ru/bse1846.html, www.roman.by/r-12893.html, www.bestreferat.ru/referat-83491.html, www.membrane.msk.ru/books/?id_6=14&id_6p=418, www.provodu.kiev.ua/oleg-mosin/istochniki-vody-na-zemle-i -ee-vidy, www.ws-54/page/kanalizatsiya/94-fiziko-himicheskie-metodi-ochistki-stochnoy-zhidkosti, www.rus-lib.ru/book/27/27/264-313.html, www.mega-walt.ru/info/knigi/akvaterm_vodopodgotovka.pdf, www.080de.ru/articie/voda_glavnyi_prirodnyi_recus.htm.

Межгосударственный стандарт: «Вода и водоподготовка»( термины и определения) ГОСТ 30813-2002.




Страницы: 1, 2, 3


реферат скачать
НОВОСТИ реферат скачать
реферат скачать
ВХОД реферат скачать
Логин:
Пароль:
регистрация
забыли пароль?

реферат скачать    
реферат скачать
ТЕГИ реферат скачать

Рефераты бесплатно, курсовые, дипломы, научные работы, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.