реферат скачать
 
Главная | Карта сайта
реферат скачать
РАЗДЕЛЫ

реферат скачать
ПАРТНЕРЫ

реферат скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат скачать
ПОИСК
Введите фамилию автора:


Концепции современного естествознания (астрономия)

Концепции современного естествознания (астрономия)

План

| |Стр. |

|1. Солнечная система и ее происхождение | |

|2. Звезды и их эволюция | |

|3. Общее представление о галактиках и их изучении | |

|4. Понятие Метагалактики | |

|Литература | |

Солнечная система и ее происхождение

В Солнечную систему входит Солнце, 9 больших планет вместе с их 34

спутниками, более 100 тысяч малых планет (астероидов), порядка 10 в 11

степени комет, а также бесчисленное количество мелких, так называемых

метеорных тел (поперечником от 100 метров до ничтожно малых пылинок).

Центральное положение в Солнечной системе занимает Солнце. Его масса

приблизительно в 750 раз превосходит массу всех остальных тел, входящих в

систему.[1] Гравитационное притяжение солнца является главной силой,

определяющей движение всех обращающихся вокруг него тел Солнечной системы.

Среднее расстояние от Солнца до самой далекой от него планеты - Плутон 39,5

а.е., т.е. 6 миллиардов километров, что очень мало по сравнению с

расстояниями до ближайших звёзд. Только некоторые кометы удаляются от

Солнца на 100 тысяч а.е. и подвергаются воздействию притяжения звезд.

Двигаясь в Галактике, Солнечная система время от времени пролетает сквозь

межзвездные газопылевые облака. Вследствие крайней разряженности вещества

этих облаков погружение Солнечной системы в облако может проявится только

при небольшом поглощении и рассеянии солнечных лучей. Проявления этого

эффекта в прошлой истории Земли пока не установлены. Все большие планеты -

Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон -

обращаются вокруг солнца в одном направлении (в направлении своего вращения

самого Солнца), по почти круговым орбитам, мало наклоненным друг к другу (и

к солнечному экватору). Плоскость земной орбиты - эклиптика принимается за

основную плоскость при отсчёте наклонений орбит планет и других тел,

обращающихся вокруг Солнца. Расстояния от планет до Солнца образуют

закономерную последовательность - промежутки между соседними орбитами

возрастают с удалением от Солнца. Эти закономерности движения планет в

сочетании с делением их на две группы по физическим свойствам указывают на

то, что Солнечная система не является случайным собранием космических тел,

а возникла в едином процессе. Благодаря почти круговой форме планетных

орбит и большим промежуткам между ними исключена возможность тесных

сближений между планетами, при которых они могли бы существенно изменять

своё движение в результате взаимных притяжений. Это обеспечивает длительное

существование планетной системы. Планеты вращаются так же вокруг своей оси,

причём почти у всех планет, кроме Венеры и Урана, вращение происходит в том

же направлении, что и их обращение вокруг Солнца. Чрезвычайно медленное

вращение Венеры происходит в обратном направлении, а Уран вращается как бы

лежа на боку. Большинство спутников обращаются вокруг своих планет в том же

направлении, в котором происходит осевое вращение планеты. Орбиты таких

спутников обычно круговые и лежат вблизи плоскости экватора планеты,

образуя уменьшенное подобие планетной системы. Таковы, например, система

спутников Урана и система галилеевских спутников Юпитера. Обратными

движениями обладают спутники, расположенные далеко от планеты. Сатурн,

Юпитер и Уран кроме отдельных спутников заметных размеров имеют множество

мелких спутников, как бы сливающихся в сплошные кольца. Эти спутники

движутся по орбитам, настолько близко расположенным к планете, что её

приливная сила не позволяет им объединиться в единое тело. Подавляющее

большинство орбит ныне известных малых планет располагается в промежутке

между орбитами Марса и Юпитера. Все малые планеты обращаются вокруг Солнца

в том же направлении, что и большие планеты, но их орбиты, как правило,

вытянуты и наклонены к плоскости эклиптики. Кометы движутся в основном по

орбитам, близким к параболическим. Некоторые кометы обладают вытянутыми

орбитами сравнительно небольших размеров - в десятки и сотни а.е. У этих

комет, называемых периодическими, преобладают прямые движения, т.е.

движения в направлении обращения планет. Будучи вращающейся системой тел,

Солнечная система обладает моментом количества движения (МКД). Главная

часть его связана с орбитальным движение планет вокруг Солнца, причём

массивные Юпитер и Сатурн дают около 90%. Осевое вращение Солнца заключает

в себе лишь 2% общего МКД всей Солнечной системы, хотя масса самого Солнца

составляет более 99,8% общей массы. Такое распределение МКД между Солнцем и

планетами связано с медленным вращением Солнца и огромными размерами

планетной системы - её поперечник в несколько тысяч раз больше поперечника

Солнца. МКД планеты приобрели в процессе своего образования: он перешел к

ним из того вещества, из которого они образовались. Планеты делятся на две

группы, отличающиеся по массе, химическому составу (это проявляется в

различиях их плотности), скорости вращения и количеству спутников. Четыре

планеты, ближайшие к Солнцу, планеты Земной группы, невелики, состоят из

плотного каменистого вещества и металлов. Планеты-гиганты - Юпитер, Сатурн,

Уран и Нептун - гораздо массивнее, состоят в основном из лёгких веществ и

поэтому, несмотря на огромное давление в их недрах, имеют малую плотность.

У Юпитера и Сатурна главную долю их массы составляют водород и гелий. В них

содержится так же до 20% каменистых веществ и легких соединений кислорода,

углерода и азота, способных при низких температурах концентрироваться в

льды. Недра планет и некоторых спутников находятся в раскалённом состоянии.

У планет земной группы и спутников вследствие малой теплопроводности

наружных слоёв внутреннее тепло очень медленно просачивается наружу и не

оказывает заметного влияния на температуру поверхности. У планет-гигантов

конвекция в их недрах приводит к заметному потоку тепла из недр,

превосходящему поток, получаемый им от Солнца. Венера, Земля и Марс

обладают атмосферами, состоящими из газов, выделившихся из их недр. У

планет-гигантов атмосферы представляют собой непосредственное продолжение

их недр: эти планеты не имеют твердой или жидкой поверхности. При

погружении внутрь атмосферные газы посте пенно переходят в конденсированное

состояние. Девятую планету - Плутон, по- видимому, нельзя отнести ни к

одной из двух групп. По химическому составу он близок к группе планет-

гигантов, а по размерам к земной группе. Ядра комет по своему химическому

составу родственны планетам - гигантам: они состоят из водяного льда и

льдов различных газов с примесью каменистых веществ. Почти все малые

планеты по своему современному составу относятся к каменистым планетам

земной группы. Сравнительно недавно открытый Хирон, движущийся в основном

между орбитами Сатурна и Урана, вероятно, подобен ледяным ядрам комет и

небольшим спутникам далёких от Солнца планет. Обломки малых планет,

образующиеся при их столкновении друг с другом, иногда выпадают на Землю в

виде метеоритов. У малых планет, именно вследствие их малых размеров, недра

подогревались значительно меньше, чем у планет земной группы, и поэтому их

вещество зачастую претерпело лишь небольшие изменения со времени их

образования. Измерения возраста метеоритов (по содержанию радиоактивных

элементов и продуктов их распада) показали, что они, а следовательно вся

Солнечная система существует около 5 миллиардов лет. Этот возраст Солнечной

системы находится в согласии с измерениями древнейших земных и лунных

образцов.

Один из центральных вопросов, связанных с изучением нашей планетной

системы, - проблема ее происхождения. Как возникла семья небесных тел,

обращающихся вокруг Солнца? Ответ на этот вопрос имеет не только важное

естественнонаучное, но и мировоззренческое, философское значение. На

протяжении веков ученые пытались выяснить прошлое, настоящее и будущее

Вселенной. Нередко их представления были в той или иной степени связаны с

господствовавшими религиозными воззрениями. Но еще в глубокой древности

зародилась мысль, что мир не был создан никем из богов. Он всегда

существовал и будет существовать. Одни миры возникают, развиваются, другие

- разрушаются и умирают. Земля, как и другие миры, сформировалась в

результате естественных причин.

Однако такие гениальные догадки настолько опережали эпоху, что не

могли быть восприняты современниками. В споре о путях происхождения и

развития Земли и планет столкнулись два прямо противоположных и

непримиримых суждения о том, что лежит в основе мироздания - дух или вечно

существующая материя? Создан ли мир богом, или он существует вечно?

В отличие от идеалистов, утверждающих первичность духа и считающих мир

продуктом творения бога, материалисты признают первичность материи.

Подтверждая свои выводы практикой исследований и наблюдений, основываясь на

повседневном опыте, материалисты доказывают, что все небесные тела, в том

числе Земля и планеты, могли возникнуть лишь из других форм материи, то

есть, сформировались естественным путем. В наше время все сколько-нибудь

значительные космогонические гипотезы являются последовательно

материалистическими.

Согласно современным представлениям, планеты Солнечной системы

образовались из холодного газопылевого облака, окружавшего Солнце миллиарды

лет назад. Наиболее последовательно такая точка зрения проведена в работах

советского ученого академика О.Ю. Шмидта.

В основе теории О. Ю. Шмидта лежит мысль об образовании планет путем

объединения твердых тел и пылевых частиц. Возникшее около Солнца

газопылевое облако вначале состояло на 98% из водорода и гелия. Остальные

элементы конденсировались в пылевые частицы. Однако беспорядочное движение

газа в облаке быстро прекратилось: оно сменилось спокойным обращением

облака вокруг Солнца.[2]

Пылевые частицы сконцентрировались в центральной плоскости, образовав

слой повышенной плотности. Когда плотность слоя достигла некоторого

«критического« значения, его собственное тяготение стало «соперничать» с

тяготением Солнца. Слой пыли оказался неустойчивым и распался на отдельные

пылевые сгустки. Сталкиваясь друг с другом, они образовали множество

сплошных плотных тел. Наиболее крупные из них приобрели почти круговые

орбиты и в своем росте начали обгонять другие тела, став потенциальными

зародышами будущих планет. Как более массивные тела, новообразования

присоединили к себе оставшееся вещество газопылевого облака. В конце концов

сформировалось девять больших планет, движение которых по орбитам остается

устойчивым на протяжении миллиардов лет.

Таким образом, почти круговые орбиты планет явились результатом

осреднения орбит тел, объединившихся в планеты. Деление планет на две

группы связано с тем, что в далеких от Солнца частях облака температура

была низкой и все вещества, кроме водорода и гелия, образовали твердые

частицы. Среди них преобладали метан, аммиак и вода, определившие состав

Урана и Нептуна. В составе самых массивных планет - Юпитера и Сатурна,

кроме того, оказалось значительное количество газов. В области планет

земной группы температура была значительно выше, и все летучие вещества (в

том числе метан и аммиак) остались в газообразном состоянии и,

следовательно, в состав планет не вошли. Планеты этой группы сформировались

в основном из силикатов и металлов.

Научная теория происхождения Солнечной системы подтверждается

многочисленными наблюдениями. Однако сейчас еще нельзя сказать, что процесс

образования планет досконально изучен.

Звезды и их эволюция.

Звёзды- горячие гиганты, излучающие большое количество

ультрафиолетовых квантов, ионизируют вокруг себя межзвёздный водород в

значительной области. Размер зоны ионизации в очень большой степени

зависит от температуры и светимости звезды. Вне зон ионизации почти весь

водород находится в нейтральном состоянии.

Звезды, за редчайшим исключением, наблюдаются как "точечные" источники

излучения. Это означает, что их угловые размеры очень малы. Даже в самые

большие телескопы нельзя увидеть звезды в виде "реальных" дисков.

Подчеркиваю слово "реальных", так как благодаря чисто инструментальным

эффектам, а главным образом неспокойностью атмосферы, в фокальной плоскости

телескопов получается "ложное" изображение звезды в виде диска. Угловые

размеры этого диска редко бывают меньше одной секунды дуги, между тем как

даже для ближайших звезд они должны быть меньше одной сотой доли секунды

дуги.

Итак, звезда даже в самый большой телескоп не может быть, как говорят

астрономы, "разрешена". Это означает, что мы можем измерять только потоки

излучения от звезд в разных спектральных участках. Мерой величины потока

является звездная величина.

Исключительно богатую информацию дает изучение спектров звезд. Уже

давно спектры подавляющего большинства звезд разделены на классы.

Последовательность спектральных классов обозначается буквами O, B, A, F, G,

K, M. Существующая система классификации звездных спектров настолько точна,

что позволяет определить спектр с точностью до одной десятой класса.

Например, часть последовательности звездных спектров между классами B и А

обозначается как В0, В1 . . . В9, А0 и так далее. Спектр звезд в первом

приближении похож на спектр излучающего "черного" тела с некоторой

температурой Т. Эти температуры плавно меняются от 40-50 тысяч градусов у

звезд спектрального класса О до 3000 градусов у звезд спектрального класса

М. В соответствии с этим основная часть излучения звезд спектральных

классов О и В приходиться на ультрафиолетовую часть спектра, недоступную

для наблюдения с поверхности земли. Однако в последние десятилетия были

запущены специализированные искусственные спутники земли; на их борту были

установлены телескопы, с помощью которых оказалось возможным исследовать и

ультрафиолетовое излучение.

Характерной особенностью звездных спектров является еще наличие у них

огромного количества линий поглощения, принадлежащих различным элементам.

Тонкий анализ этих линий позволил получить особенно ценную информацию о

природе наружных слоев звезд.

Химический состав наружных слоев звезд, откуда к нам "непосредственно"

приходит их излучение, характеризуется полным преобладанием водорода. На

втором месте находится гелий, а обилие остальных элементов достаточно

невелико. Приблизительно га каждые десять тысяч атомов водорода приходиться

тысячи атомов гелия, около 10 атомов кислорода, немного меньше углерода и

азота и всего лишь один атом железа. Обилие остальных элементов совершенно

ничтожно. Без преувеличения можно сказать, что наружные слои звезд - это

гигантские водородно-гелиевые плазмы с небольшой примесью более тяжелых

элементов.

Хорошим индикатором температуры наружных слоев звезды является ее

цвет. Горячие звезды спектральных классов О и В имеют голубой цвет; звезды,

сходные с нашим Солнцем (спектральный класс которого G2), представляются

желтыми, звезды же спектральных классов К и М - красные. В астрофизике

имеется тщательно разработанная и вполне объективная система цветов. Она

основана на сравнении наблюдаемых звездных величин, полученных через

различные строго эталонированные светофильтры. Количественно цвет звезд

характеризуется разностью двух величин, полученных через два фильтра, один

из которых пропускает преимущественно синие лучи ("В"), а другой имеет

кривую спектральной чувствительности, сходную с человеческим глазом("V").

Техника измерений цвета звезд настолько высока, что по измеренному значению

B-V можно определить спектр звезды с точностью до подкласса. Для слабых

звезд анализ цветов - единственная возможность их спектральной

классификации.

Знание спектрального класса или цвета звезды сразу же дает температуру

ее поверхности. Так как звезды излучают приблизительно как абсолютно черные

тела соответствующей температуры, то мощность, излученная единицей их

поверхности, определяется из закона Стефана Больцмана:

[pic] - постоянная Больцмана

Мощность излучения всей поверхности звезды, или ее светимость,

очевидно будет равна

[pic] ( * ), где R - радиус звезды. Таким образом, для определения

радиуса звезды надо знать ее светимость и температуру поверхности.

Нам остается определить еще одну, едва ли не самую важную

характеристику звезды - ее массу. Надо сказать, что это сделать не так то

просто. А главное существует не так уж много звезд, для которых имеются

надежные определения их масс. Последние легче всего определить, если звезды

образуют двойную систему, для которой большая полуось орбиты а и период

обращения Р известны. В этом случае массы определяются из третьего закона

Кеплера, который может быть записан в следующем виде:

[pic] , здесь М1 и М2 - массы компонент системы, G - постоянная в

законе всемирного тяготения Ньютона. Уравнение дает сумму масс компонент

системы. Если к тому же известно отношение орбитальных скоростей, то их

массы можно определить отдельно. К сожаления, только для сравнительно

небольшого количества двойных систем можно таким образом определить массу

каждой из звезд.

В сущности говоря, астрономия не располагала и не располагает в

настоящее время методом прямого и независимого определения массы (то есть

не входящей в состав кратных систем) изолированной звезды. И это достаточно

серьезный недостаток нашей науки о Вселенной. Если бы такой метод

существовал, прогресс наших знаний был бы значительно более быстрым. В

такой ситуации астрономы молчаливо принимаю, что звезды с одинаковой

светимостью и цветом имеют одинаковые массы. Последние же определяются

только для двойных систем. Утверждение, что одиночная звезда с той же

светимостью и цветом имеет такую же массу, как и ее "сестра", входящая в

состав двойной системы, всегда следует принимать с некоторой осторожностью.

Итак, современная астрономия располагает методами определения основных

звездных характеристик: светимости, поверхностной температуры (цвета),

радиуса, химического состава и массы. Возникает важный вопрос: являются ли

эти характеристики независимыми? Оказывается, нет. Прежде всего имеется

функциональная зависимость, связывающая радиус звезды, ее болометрическую

светимость и поверхностную температуру. Эта зависимость представляется

простой формулой ( * ) и является тривиальной. Наряду с этим, однако, давно

уже была обнаружена зависимость между светимостью звезд и их спектральным

классом (или, что фактически одно и то же,- цветом). Эту зависимость

эмпирически установили (независимо) на большом статистическом материале еще

в начале нашего столетия выдающиеся астрономы датчанин Герцшпрунг и

американец Рассел.

Первая стадия жизни звезды подобна солнечной - в ней доминируют

реакции водородного цикла. Тампература звезды определяется ее массой и

степенью гравитационного сжатия, которому противостоит главным образом

световое давление. Звезда образует относительно устойчивую колебательную

систему, ее периодические слабые сжатия и расширения определяют звездные

циклы. По мере выгорания водорода в центре звезды, ее гелиевое ядро

остывает, а зона протекания реакции синтеза перемещается на переферию.

звезда «разбухает», поглащая планеты ее системы, и остывает, превращаясь в

красного гиганта.

Дальнейшее сжатие гелиевого ядра поднимает его температуру до

зажигания реакций гелиевого цикла. Водородная оболочка постепенно

рассеивается, образуя звездную туманность, а сильно сжатое ядро раскаляется

Страницы: 1, 2


реферат скачать
НОВОСТИ реферат скачать
реферат скачать
ВХОД реферат скачать
Логин:
Пароль:
регистрация
забыли пароль?

реферат скачать    
реферат скачать
ТЕГИ реферат скачать

Рефераты бесплатно, курсовые, дипломы, научные работы, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.