![]() |
|
|
Производство бета-каротинаПроизводство бета-каротинаВитамины (от лат. vita - жизнь), группа органических соединений разнообразной химической природы, необходимых для питания человека, животных и других организмов в ничтожных количествах по сравнению с основными питательными веществами (белками, жирами, углеводами и солями), но имеющих огромное значение для нормального обмена веществ и жизнедеятельности. Первоисточником
В. служат главным образом растения. Человек и животные получают В.
непосредственно с растительной пищей или косвенно - через продукты животного
происхождения. Важная роль в образовании В. принадлежит также микроорганизмам.
Например, микрофлора, обитающая в пищеварительном тракте жвачных животных,
обеспечивает их витаминами группы В. Витамины поступают в организм животных и
человека с пищей, через стенку желудочно-кишечного тракта, и образуют многочисленные
производные (например, эфирные, амидные, нуклеотидные и др.), которые, как
правило, соединяются со специфическими белками и образуют многие ферменты,
принимающие участие в обмене веществ. Наряду с ассимиляцией в организме
непрерывно совершается диссимиляция В., причём продукты их распада (а иногда и
малоизменённые молекулы В.) выделяются наружу. Недостаточность снабжения
организма В. ведёт к его ослаблению, резкий недостаток В. - к нарушению обмена
веществ и заболеваниям - авитаминозам, которые могут окончиться гибелью
организма. Авитаминозы могут возникать не только от недостаточного поступления
В., но и от нарушения процессов их усвоения и использования в организме. В. имеют буквенные обозначения, химические названия или названия, характеризующие их по физиологическому действию. В 1956 принята единая классификация В., которая стала общеупотребительной. Наличие химически чистых В. дало возможность подойти к выяснению их роли в обмене веществ организма. В. либо входят в состав ферментов, либо являются компонентами ферментативных реакций. При отсутствии В. в организме нарушается деятельность ферментных систем, в которых они участвуют, а следовательно, - и обмен веществ. Известно несколько сот ферментов, в состав которых входят В., и огромное количество катализируемых ими реакций. Многие В. - преимущественно участники процессов распада пищевых веществ и освобождения заключённой в них энергии (витамины B1, В2, PP и др.). Участвуют они и в процессах синтеза: B6 и В12 - в синтезе аминокислот и белковом обмене, В3 (пантотеновая кислота) - в синтезе жирных кислот и обмене жиров, Вс (фолиевая кислота) - в синтезе пуриновых и пиримидиновых оснований и многих физиологически важных соединений - ацетилхолина, глутатиона, стероидов и др. Менее изучено действие жирорастворимых В., однако несомненно их участие в построении структур организма, например в образовании костей (витамин D), развитии покровных тканей (витамин А), нормальном развитии эмбриона (витамин Е и др.). Таким образом, витамины имеют огромное физиологическое значение. Выяснение физиологической роли В. позволило использовать их для витаминизации продуктов питания, в лечебной практике и в животноводстве. Особенно широко стали применяться В. после освоения их промышленного синтеза. Витаминная промышленность, вырабатывает синтетические витамины, коферменты в виде чистых кристаллических веществ и готовых к применению форм (драже, таблетки, ампулы, капсулы, гранулы, концентраты) и в небольших количествах витаминные препараты из растительного и животного сырья. Витамины повышают пищевую ценность продуктов питания, применяются в лечебной практике и для витаминизации кормов с целью повышения продуктивности животноводства. Производство витаминов в нашей стране организовано в начале 30-х гг. Вначале выпускались витаминные препараты из натурального сырья. Затем было освоено производство синтетических витаминов С и K3. С 1949 по технологии, разработанной советскими учёными, в промышленном масштабе стал осваиваться синтез других витаминов, например тиамина (витамин B1). В 1950 производство витаминов в СССР увеличилось по сравнению с 1940 в 5,6 раза. К 1955 в СССР были разработаны схемы синтеза всех известных основных витаминов. Дальнейшее развитие витаминной промышленности связано главным образом с разработкой и внедрением синтетических методов производства витаминов. Эти методы по характеру технологических процессов значительно сложнее, чем метод извлечения витаминов из натурального сырья, но они позволяют получать продукцию в химически чистом виде, что имеет большое значение для их лечебного применения и точных дозировок при изготовлении кормовых концентратов. Кроме того, издержки на производство синтетических витаминов ниже издержек на получение соответствующих витаминов из натурального сырья. За 1959-65 в промышленном масштабе освоен синтез всех известных витаминов и витаминных препаратов, введены в строй крупные витаминные предприятия: Белгородский витаминный и Болоховский (Тульская область) химические комбинаты, а также значительно увеличены мощности ранее действовавших предприятий. В 1965 объём производства витаминной продукции в СССР увеличился по сравнению с 1958 в 2,8 раза, а в 1970 по сравнению с 1965 в 2,6 раза. В 1970 выпуск синтетических витаминов и их готовых форм составил более 99% всего объёма производства витаминной продукции. К специфическим особенностям синтеза витаминов относятся: многостадийность процессов; значительная материалоёмкость, обусловливающая необходимость размещения предприятий В. п. вблизи сырьевых баз; применение специальной аппаратуры, предназначенной для работы с агрессивными средами; необходимость выработки высокочистой продукции. Витаминные заводы - специализированные предприятия. Преобладает предметная специализация - осуществление синтеза витаминов на каждом предприятии по полной схеме их производства, включая и выпуск всех полупродуктов. С конца 60-х гг. расширяется более эффективная - технологическая специализация производства полупродуктов. Научно-технические проблемы получения витаминов и их применения разрабатываются в СССР в основном во Всесоюзном научно-исследовательском витаминном институте, а также в научно-исследовательских организациях АМН СССР, АН СССР и АН союзных республик, министерств и ведомств. Вопросы совершенствования действующих производств решаются центральными заводскими лабораториями. Главные направления развития витаминной промышленности в России: - создание новых высокоэффективных препаратов; - совершенствование технологии производства и разработка новых, улучшенных схем синтеза, основанных на использовании дешёвых видов отечественного сырья; - увеличение выработки витаминов, коферментов и их готовых форм до уровня, обеспечивающего полное удовлетворение потребностей народного хозяйства, расширение ассортимента продукции; - строительство новых и реконструкция действующих производств; - механизация и автоматизация технологических процессов; - совершенствование и организация производства отдельных полупродуктов на предприятиях других отраслей промышленности; - повышение качества продукции; - углубление технологической специализации; - внедрение автоматизированных систем управления отраслью промышленности и производством. В наиболее развитых странах, особенно в США, Японии, Великобритании, Германии, Франции, Швейцарии, производство витаминов достигло больших размеров. Как правило, оно сосредоточено в руках химико-фармацевтических фирм. Производство витаминов из дрожжей В настоящее время чистые препараты витаминов получают главным образом синтетически, в некоторых случаях отдельные стадии их образования выполняются методами микробиологического синтеза. Распространенное ранее производство концентратов витаминов из продуктов растительного или животного происхождения сейчас почти полностью потеряло свое значение. В то же время, некоторые витамины получают с помощью экстракции и очистки культуральной жидкости или биомассы микроорганизмов. Наряду с использованием непосредственно дрожжевой биомассы как источника витаминов в виде дрожжевых гидролизатов и пивных дрожжей, некоторые дрожжи используются для микробиологического производства чистых витаминов.
Использование дрожжей для производства чистых витаминов началось в 1930-х годах с получения витамина D. С использованием специальных рас Saccharomyces cerevisiae получают эргостерол, который после облучения ультрафиолетом модифицируется в витамин D2 (кальциферол). Существуют штаммы сахаромицетов, обладающие способностью к гиперсинтезу витамина B2 (рибофлавина), которые могут быть использованы для получения этого витамина. Из базидиомицетовых дрожжей, обладающих способностью к интенсивному синтезу каротиноидов, получают препараты β-каротина, являющегося предшественником витамина A, и астаксантина. Питьевые дрожжи Дрожжевой осадок, остающийся после сбраживания пивного сусла, издавна используют для получения различных полезных веществ, в частности дрожжевых гидролизатов и автолизатов. Гидролизаты дрожжей получают, нагревая дрожжевую биомассу при 100°C в кислой среде. Большая часть белков при этом гидролизуется до аминокислот. Затем препарат нейтрализуют и концентрируют в виде густой пасты или высушивают. При получении дрожжевых автолизатов разрушение клеточных компонентов происходит под действием ферментов самой дрожжевой клетки. Этот процесс протекает в обычных условиях в или при небольшом нагревании дрожжевого осадка без питательных веществ до 50°C и обычно продолжается в течение 1-2 сут. За это время около половины всех белков в дрожжевых клетках расщепляется до аминокислот. Дрожжевые гидролизаты широко применяются в качестве источника витаминов и аминокислот в медицине, в микробиологии при составлении питательных сред. Дрожжевые гидролизаты и автолизаты обладают способностью придавать пищевым продуктам привкус мяса, или усиливать такой вкус, поэтому они широко используются в пищевой промышленности для приготовления различных приправ, в качестве вкусовых добавок в готовые продукты (например, в картофельные чипсы). Большой популярностью пользуются пивные (питьевые) дрожжи, приготовляемые на основе частично гидролизованной дрожжевой биомассы. Они используются в качестве источника витаминов (в первую очередь В1 и В2, а также РР, В3, В4, В6, Н), незаменимых аминокислот и жирных кислот и широко применяются в медицине, ветеринарии, косметологии, диетологии. Красные дрожжи Многие дрожжи синтезируют большое количество каротиноидов, придающих их колониям красную, розовую, оранжевую или желтую окраску. Способность к образованию каротиноидов и формирование окрашенных колоний встречается только среди базидиомицетовых дрожжей, то есть относится к признакам аффинитета. Наиболее характерно образование каротиноидов для родов Rhodosporidium, Cystofilobasidium, Sporidiobolus, и их анаморф Rhodotorula, Cryptococcus, Sporobolomyces. К наиболее распространенным каротиноидам относится β-каротин. β-Каротин Это широко распространенное соединение, встречающиеся также во многих растениях и грибах. β-Каротин является предшественником витамина A и его промышленное получение представляет интерес для медицины и некоторых других облестей. Разработаны и применяются биотехнологические процессы получения β-каротина с использованием красных дрожжей, например Rhodotorula glutinis. У базидиомицетовых дрожжей встречаются и другие виды каротиноидов. Например, красные дрожжи Phaffia rhodozyma образуют каротиноид астаксантин. Астаксантин Астаксантин - широко распространенный в природе каротиноидный пигмент ярко-красной окраски. В отличие от β-каротина имеет два дополнительных атома кислорода на каждом из колец. Впервые был выделен из омаров в 1938 году, сейчас обнаружен в тканях многих растений и животных. Особенно в большом количестве содержится в тканях креветок, крабов, лососевых рыб, придавая им красный цвет. Астаксантин является одним из наиболее активных антиоксидантов и используется в медицине для лечения ряда заболеваний. Препараты астаксантина широко используются в качестве кормовой добавки в рыбоводстве, особенно при выращивании лососей, и аквариумоводстве. Основным источником для получения астаксантина служит водоросль Haematococcus инцистированные клетки которой содержат до 4% каротиноида. Астаксантин был обнаружен также в дрожжах Phaffia rhodozyma (телеоморфа Xanthophyllomyces dendrorhous). Генетически модифицированные штаммы Phaffia содержат до 1-2% астаксантина и могут также использоваться для промышленного получения этого каротиноида. Клетки овальные или круглые, иногда удлиненные. Почкование истинное, многостороннее. Может формироваться примитивный псевдомицелий, но истинного мицелия не образуют. Диплоидизация происходит в результате слияния двух гаплоидных клеток (гологамия). Вегетативно размножаются в основном диплоидные клетки. Аски образуются преимущественно из вегетативных диплоидных клеток. Аски круглые или овальные, при созревании спор не вскрываются. Аскоспоры круглые или слабоовальные, бесцветные, гладкие, 1-4 в аске. Все виды активно сбраживают сахара. Дрожжи этого рода с давних времен распространены в кустарном виноделии и широко используются в разных отраслях бродильной промышленности, в связи с чем они более всех других дрожжей изучены в разных аспектах. Их систематика, однако, многократно пересматривалась. Центральный вид - Saccharomyces cerevisiae известен в десятках синонимов, которые в настоящее время рассматриваются как производственные расы, но не самостоятельные виды. Потребность дрожжей в витаминах Одна из характеристик, используемых для таксономического описания дрожжей - потребность в витаминах. Более 80% всех известных видов дрожжей не способны к росту на среде, не содержащей витамины (ауксотрофны). Наибольшее число видов (около 65%) нуждается в биотине и тиамине. Из других витаминов в таксономии дрожжей используется определение потребности в рибофлавине, пантотеновой кислоте, пиридоксине, инозите и никотиновой кислоте.
Для определения потребности исследуемого штамма в том или ином витамине его выращивают на стандартной среде, содержащей определенный витамин, и сравнивают с ростом на этой же среде, не содержащей витаминов. В случае, если добавление витамина приводит к существенному увеличению роста, делают вывод о ауксотрофности штамма по этому витамину. Тесты на способность к росту на безвитаминной среде и определение потребности в конкретных витаминах входят в стандартное описание вида дрожжей. Зависимость скорости роста ауксотрофных штаммов дрожжей от содержания определенных витаминов была использована для разработки методов определения концентрации витаминов в различных средах по измерению прироста дрожжевой биомассы. Стандартные среды для физиологических тестов Разделение дрожжей на виды базируется на многих характеристиках, среди которых важное место занимают как морфологические, так и физиологические признаки - способность к росту на различных органических соединениях в качестве единственного источника углерода и энергии, способность к усвоению различных источниках азота, потребность в различных витаминах и т.п. Все эти характеристики сильно зависят от состава среды и условий культивирования, поэтому в систематике дрожжей разработаны и применяются среды стандартного состава. Полный набор таких сред выпускается в готовом виде фирмой Difco (Difco Laboratories, в 1997 г. вошедшая в состав BD Diagnostic Systems). Среди этих сред наиболее популярны: морфологический агар - для описания макро- и микроморфологических характеристик дрожжевой культуры, азотная основа - для определения способностей к росту на различных источниках углерода, углеродная основа - для определения способности к усвоению различных источников азота, базвитаминная среда - для определения потребностей в витаминах. Состав этих сред приведен в таблице:
Страницы: 1, 2 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, курсовые, дипломы, научные работы, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |