реферат скачать
 
Главная | Карта сайта
реферат скачать
РАЗДЕЛЫ

реферат скачать
ПАРТНЕРЫ

реферат скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат скачать
ПОИСК
Введите фамилию автора:


Производство бета-каротина



ПРОИЗВОДСТВО КРИСТАЛЛИЧЕСКОГО  β-КАРОТИНА ИЗ 

МОРКОВИ


Исходным сырьем для получения кристаллического β-каротина являет­ся морковь, содержащая среди каротиноидов 85—90% β-каротина. Наобо­рот, в тыкве содержание β-каротина составляет лишь 60—70%. Про­изводство кристаллического каротина включает следующие стадии: 1) экс­тракция каротина из сухого коагулята белков органическим растворителем; 2) омыление концентрата; 3) экстракция каротина из омыленной массы и 4) кристаллизация каротина.

Экстракция каротина. Большинство исследователей схо­дятся на применении в качестве органического растворителя для экстрак­ции р-каротина хлорированных углеводородов (в основном дихлорэтан). Существует мнение о целесообразности предварительной экстракции белкового коагулята спиртом для удаления стеринов, фосфатидов, свободных жирных кислот и других веществ. Однако дополнитель­ная экстракция спиртом сильно осложнит технологию производства, поэто­му необходимость этого процесса нуждается в технико-экономическом обос­новании. Экстракцию осуществляют дихлорэтаном в экстракторах непре­рывного действия (при крупном производстве) или в аппаратах типа Сокслета при небольших масштабах производства. Дихлорэтана в реактор загружают 400% к массе сухого коагулята. Экстракцию ведут в течение 1—1,5 ч. Содержание каротина в шроте не должно превышать 5% к введенному каротину с белковым коагулятом. Затем в испарителе 2 в присутствии СО2 отгоняют дихлорэтан (температура не должна быть выше 50° С).

Омыление концентрата. Омыление производят 10%-ным раствором ед­кого кали, которого добавляют около 10% к массе концентрата. Процесс проводят в реакторе 3 с обратным холодильником в течение 20 мин при 50° С. При омылении образуется осадок, содержащий до 80% каротина и жидкое мыло. Осадок отфильтровывают на нутч-фильтре 4 и промывают спиртом от мыла и красящих веществ.

Б. Савинов и А. Свищук указывают на образование нерасслаивающихся эмульсий при омылении липоидных экстрактов в хлорированных углеводородах. Это явление ими было успешно устранено совмещением стадии омыления со стадией экстракции.

Экстракция каротина из омыленной массы. Каротин экстрагируют ди­хлорэтаном  в  количестве,   необходимом для   растворения   каротина  при  комнатной температуре, исходя из того, что в 100 мл дихлорэтана (ДХЭ) растворяется при температуре 25° С 1,16 г каротина.

Экстракцию ведут при комнатной температуре в реакционном аппарате 5, снабженном обратным холодильником и мешалкой. Затем массу фильт­руют на нутч-фильтре 6, промывают осадок чистым ДХЭ. Экстракт с про­мывным ДХЭ сгущают в вакуум-перегонном аппарате 7 до получения пере­сыщенного  раствора.

Первая кристаллизация. Пересыщенный раствор спускают в кристалли­затор 8, где в течение 8 ч идет процесс кристаллизации вначале при комнатной температуре, а затем через 4 ч при охлаждении, к концу процесса тем­пературу доводят до 5° С.

Для увеличения выхода каротина на первой кристаллизации в пересыщенный раствор вводят этиловый спирт в отношении 1:2. Затем отфуговывают в центрифуге 9 выделившиеся кристаллы, промы­вают их спиртом и высушивают в вакуум-сушилке 10. Маточный раствор I поступает в сборник 11.

Вторая кристаллизация. Маточный раствор 1 перерабатывают совместно с промывными и мыльной массой. Для этого мыльную массу экстрагируют два раза ДХЭ в нутч-фильтре 4, а экстракт промывают водой в смесителе 12. Экстракт и маточник I направляют в сборник 13, откуда они поступают в вакуум-аппарат 14 для упаривания в концентрат П. Последний поступает в кристаллизатор 15, где кристаллизуется 24 ч. Фуговку производят при температуре 5° С в центрифуге 16. Кристаллы каротина II промывают спир­том и направляют на переработку совместно с экстрактом омыленной мас­сы (до первой кристаллизации). Маточный раствор II поступает в сборник 17.

Третья кристаллизация. Маточный раствор II совместно с промывными второй кристаллизации упаривают в вакуум-аппарате 18, кристаллизуют 72 ч в кристаллизаторе 19, фугуют в центрифуге 20. Кристаллы промыва­ют спиртом. Получают кристаллы каротина III, направляемые на переработ­ку в маточный раствор I и в виде отхода маточный раствор II — в сборник

Нормы качества готовой продукции. Кристаллический каротин должен быть однородным, мелкокристаллическим сухим   порошком без   слежав19, фугуют в центрифуге 20. Кристаллы промыва­ют спиртом. Получают кристаллы каротина III, направляемые на переработ­ку в маточный раствор I и в виде отхода маточный раствор II — в сборник

Нормы качества готовой продукции. Кристаллический каротин должен быть однородным, мелкокристаллическим сухим   порошком без   слежав шихся комков лилово-красноватого цвета с металлическим блеском. Точ­ка плавления каротина должна быть не ниже 160° С. Содержание  β-каротина в кристаллах не менее 90%.

Вопросы усовершенствования технологии производства каротина из мор­кови. Интересные исследования в этой области были проведены Б. Савино­вым и его учениками. Исходя из факта локализации каро­тина на хромопластах, им было предложено заменить процесс прессования мезги моркови процессом вымывания пластид из клеток интенсивным пере­мешиванием мезги с водой в суспензионном экстракторе. Им же был разработан метод получения масляных концентратов каротина из влажного белкового коагулята путем применения центробежного смесителя. Разработан метод получения каротина из моркови и тыквы методом термиче­ской коагуляции белков в клетке, изучены вопросы экстракции каротина в многочленной батарее. К сожалению, эти методы не нашли широкого применения в связи с развитием химического синтеза витаминов.


ХИМИЧЕСКИЙ СИНТЕЗ β–КАРОТИНА


Метилгептенон (6-метилгептен-5-он-2). Получают его конденсацией диметилвинилкарбинола и ацетоуксусного эфира при температуре 160—165° С по следующей химической схеме:

В реактор 29 из нержавеющей стали, снабженный колонкой с дефлегма­тором и конденсатором, из мерника загружают вазелиновое масло (высококипящий разбавитель) и при температуре 210° С (в масле) загружают диметилвинилкарбинол и ацетоуксусный эфир так, чтобы температура ре­акционной массы была не ниже 160—165° С. Затем нагревание продолжают при температуре 160—180° С 3 ч до прекращения выделения газа (СО2). В сборник после конденсатора собирают отгон (спирт с примесью ацетона). Кубовый остаток разгоняют при остаточном давлении 5—6 мм рт. ст. в вакуум-перегонном аппарате 30. Готовый продукт поступает в приемник. Выход 60%.

Метилгептенон — бесцветная жидкость, температура кипения 52—53°С при остаточном давлении 5 мм рт. ст. C8H14О, молекулярная масса 126,19; п2о = 1,4404; d20=0,8616, хорошо перегоняется с водяным паром; Хтах = 243 нм (в спирте), lgs =2,54.

Дегидролиналоол (3,7-диметилоктаен-6-ин-1-ол-3). Дегидролиналоол синтезируют по следующей химической реакции:

В реактор из эмалированной стали 31, снабженный мешалкой, барботером для подвода ацетилена загружают толуол из мерника 32 и порошко­образное едкое кали, нагревают до 80° С и из баллона 33 пропускают аце­тилен при перемешивании в течение 2 ч. После прекращения нагревания уменьшают ток ацетилена, охлаждают рассолом до —12—10° С и постепен­но в течение 3 ч приливают метилгептенон из мерника 34. Затем добавляют воды и после перемешивания разделяют слои в делительной воронке 35. Толуольный раствор переводят в реактор 36, в котором нейтрализуют угле­кислотой. В перегонном аппарате 37 отгоняют толуол, а затем при остаточ­ном давлении 12—14 мм рт. ст. собирают фракцию, кипящую при темпера­туре 89—91С. Выход 76—80%.

Дегидроналоол — бесцветная жидкость, температура кипения 78—80°С при остаточном давлении 8 мм рт. ст.; Cl0H12O, молекулярная масса 152,23; плотность ==1,4632. Хорошо растворим в органических растворителях, плохо — в воде.

Псевдоионон. Псевдоионон получают из дегидролиналоола путем аци-лирования его, изомеризации ацетата, омыления его и конденсации с аце тоном в присутствии едкого натра. Синтез протекает по следующей схеме

В реактор из нержавеющей стали 38 загружают из мерника 39 дегидролиналоол, из мерника 40уксусный ангидрид и из мерника 41 каталитическое количество фосфорной кислоты, перемешивают (температура не выше 50° С) и выдерживают 14—15 ч при температуре 18° С. Затем вводят в реактор из баллона 42 азот, нагревают реакционную массу до 90° С и добавляют каталитическое количество карбоната серебра, продолжая перемешивание 1,5 ч при температуре 90° С. Далее реакционную массу охлаж­дают до 20° С и передают под давлением в реактор 43, в который из мерника 44 загружают 20%-ный водный раствор хлористого натрия. После перемешивания разделяют слои в делительной воронке 45. В ней же промывают верхний слой раствором хлористого натрия до нейтральной реакции. Затем верхний слой переводят в реактор 46 и вводят в него из мерника 47 ацетон и из мерника 48,8%-ный водный раствор едкого натра, нагревают до 40° С и перемешивают 2,5—3 ч. Реакционную массу при темпе­ратуре 20° С нейтрализуют уксусной кислотой из мерника 49. В делитель­ной воронке 50 разделяют слои: нижний слой поступает в сборник 51, откуда далее направляют на регенерацию. Верхний слой промывают в ко­лонке 52 раствором хлористого натрия. Промытый слой (технический псевдоионон) передают в сборник 53 и далее в вакуум-перегонный аппарат 54, снабженный колонкой, дефлегматором и конденсатором. Перегонку ведут при остаточном давлении 6—7 мм рт. ст., отбирают фракцию, кипящую при 131—135°С в сборник 55. Выход 54—55%.

Псевдоионон — желтоватая маслянистая жидкость, хорошо растворима в органических растворителях, плохо — в воде, температура кипения при остаточном давлении 5 мм рт. ст.— 120° С; С13Н10О, молекулярная мас­са 192,29; n2D°=l,5300, df = 0,8954; Xmax = 291 нм, Е= 1205; содержание не ниже 95%.


СИНТЕЗ β-ИОНОНА

β-Ионон получают процессом циклизации псевдоионона под влиянием смеси концентрированной серной кислоты и ледяной уксусной кислоты в среде толуола по химической схеме:



В реактор 1 из сборника 2 загружают псевдоионон и из сборника 3 толуол и перемешиванием получают толуольный раствор псевдоионона (плотность 890—900 кг/м3), подаваемый насосом 4 в мерник 5. В реактор из эмалированной стали 6 сливают концентрированную серную кислоту из мерника 7, которую в реакторе 6 охлаждают до 0°, а затем медленно за­гружают из мерника 8 ледяную уксусную так, чтобы температура не подни­малась выше 15° С. Смесь кислот насосом 8 подают в мерник 9. В аппарат для циклизации 10 из нержавеющей стали, снабженный мешалкой и рубаш­кой, подают из мерника 9 смесь кислот, а из мерника 5 толуольный раствор псевдоионона. Реакция протекает при температуре минус 7—10° С в тече­ние 1 ч. Для нейтрализации реакционной массы применяют 18—20%-ный раствор углекислого натрия. В реактор // загружают углекислый натрий, из мерника 12 воду и при перемешивании насыщенный раствор насосом 13 подают в мерник 14. Из аппарата циклизации 10 нейтрализованная реакци­онная масса поступает в делительную воронку 15, где промывается раство­ром карбоната натрия и далее поступает в сборник 16 и в перегонный аппа­рат 17. В нем отгоняют толуол в сборники 18 и 19 при остаточном давлении 20 мм рт. ст. Остаток перегоняют при остаточном давлении 1 мм рт. ст. в перегонном аппарате 20 и собирают в приемнике. Выход 75%.

β-Ионон — желтоватая маслянистая жидкость, температура кипения 118—120°С при остаточном давлении 5 мм рт. ст. и 132° С при остаточном давлении 12 мм рт. ст., С13Н2оО, молекулярная масса 192,29; по =1,5210; хорошо растворим в органических растворителях, плохо в воде; Xmах= 296 нм, E=557.


СИНТЕЗ АЛЬДЕГИДА С14 [4(2',6',6'-ТРИМЕТИЛЦИКЛОГЕКСЕН-

Г-ИЛ)-2-МЕТИЛБУТЕН-З-АЛЬ-1]

Синтез альдегида С14 осуществляют по реакции Дарзана путем конден­сации (3-ионона с метиловым или этиловым эфиром монохлоруксусной кис­лоты в присутствии метилата натрия. Реакции протекают по следующей схеме:


Реакция конденсации. В реактор 21, снабженный охлаждающей рубаш­кой и мешалкой, загружают (3-ионон из сборника 22 и в течение 2—3 ч при ливают из мерника 23 этиловый эфир хлоруксусной кислоты, а из сборника 24 сухой метилат натрия. Температуру при этом поддерживают минус 5—7° С. В результате реакции конденсации получается глицидный эфир, который из раствора не выделяют.

Омыление. Глицидный эфир омыляют раствором едкого натра в водном метаноле, который добавляют из смесителя 25 в тот же реактор в течение 1,5—2 ч при температуре 18—20°С. В результате омыления получают натриевую соль глицидного эфира.

Декарбоксилирование. В реактор 21 добавляют воду и дихлорэтан, пере­мешивают, а затем направляют реакционную массу в делительную ворон­ку 26. Нижний дихлорэтановый слой отделяют в воронке и в смесителе 27 промывают водным раствором поваренной соли, приготовленном в смеси­теле 28. Нижний слой спускают в смеситель 29, затем добавляют в этот смеситель сульфат натрия и перемешивают. Сухой экстракт переводят в вакуум-перегонный аппарат 30, отгоняют дихлорэтан, а затем под глубо­ким вакуумом (0,1 мм рт. ст. при температуре около 100° С) отгоняют аль­дегид С14. При необходимости альдегид подвергают ректификации при оста­точном давлении 0,3—0,5 мм рт. ст.

Альдегид С14 — светло-желтая маслянистая жидкость с температурой кипения 103—106° С при остаточном давлении 0,2 мм рт. ст., хорошо рас­творим в органических растворителях, плохо—в воде. При хранении неустойчив.  Формула С14Н220, молекулярная масса 206,14.


ТЕХНОЛОГИЧЕСКАЯ СХЕМА ПРОИЗВОДСТВА  СИНТЕТИЧЕСКОГО

р-КАРОТИНА

Технология производства базируется на однокомпонентном методе син­теза, разработанном Ингоффеном  и усовершенствованном Излером с их соавторами. Этот метод нашел свое дальнейшее развитие в исследованиях Н. Преображенского, Г. Самохвалова и Л. Вакуловой. Метод заключается в конденсации двух молекул альдегида С19 с молекулой ацетилена по реакции Гриньяра. Технология включает сле­дующие стадии синтеза: синтез (3-С16-альдегида из β-С14-альдегида; синтез β-С)9-альдегида из (3-С16-альдегида; синтез 15,15-дегидро-(3-каротина изС19-альдегида и ацетилена; синтез транс-β-каротипа из 15,15-дегидро-β-каротина.


СИНТЕЗ    β-С14-АЛЬДЕГИДА-[9-МЕТИЛ-6-(1,1,5-

ТРИМЕТИЛЦИКЛОГЕКСЕН-5 ИЛ)-ГЕКСАДИЕН-8, 10-АЛЬ-12]

Химические реакции получения альдегида С16 заключаются в ацеталировании альдегида-С14, конденсации полученного ацеталя с виниловым эфиром в присутствии хлористого цинка и омыления алкоксиацеталя аль­дегида С16. Химизм реакций синтеза альдегида С16 основан на склонности виниловых эфиров присоединяться к ацеталям а, (3-непредельных карбо­нильных соединений, причем одна алкоксигруппа [OR] переме­щается от ацеталя к двойной связи винилового эфира. Остаток ацеталя присоединяется к β-углеродному атому винилового эфира. Конденсация и перегруппировка протекает по схеме:

По этой схеме протекает следующий синтез.

Схема реакций  синтеза  С16-альдегида.

Для успешного протекания реакций ацетализирования и конденсации важно, чтобы влажность реагентов была минимальной (в %): абсолютного спирта — 0,15; этилвинилового эфира — 0,2; ортомуравьиного эфира — 0,09; альдегида-С14 — 0,04. Хлористый цинк предварительно должен быть сплавлен и высушен в вакуум-эксикаторе над концентрированной серной кислотой.

Ацетализирование. В реактор 1 из нержавеющей стали, снабжен­ный мешалкой, обратным холодильником и барботером для азота, загру­жают через мерник 2 альдегид-С14, из мерника 3 ортомуравьиный эфир (температура кипения 144—145° С, плотность 897 кг/м3), из мер­ника 4 — раствор паратолуолсульфокислоты в абсолютном этаноле. Реак­цию ведут в присутствии азота, вводимого в реактор из баллона 5. Переме­шивают в течение 20—24 ч при комнатной температуре. Затем в реакционную массу вводят из мерника 6 лигроин и нейтрализуют 2,5%-ным раствором бикарбоната натрия, загружаемым из мерника 7. После этого отделяют ор­ганический слой в делительной воронке 8 и после просушки поташом на­правляют в сборник 9, а из него в перегонный аппарат 10, где при темпера­туре около 50°С и остаточном давлении 3—5 мм рт. ст. отгоняют раствори­тель. Технический продукт содержит около 95% ацеталя. Выход ацеталя из (3-С14-альдегида составляет около 75 %. На выход ацета­ля из альдегида-С 16 значительно влияет чистота альдегида-С14. Диэтилацеталь β-С14-альдегида С18Н3202 представляет собой маслянистую жид­кость желтого цвета с температурой кипения 87—96°С при остаточном давлении 0,2 мм рт. ст.; df =0,9279; n™ =1,4773.

Конденсация с этилвиниловым эфиром. В реактор 11, снабженный хо­лодильником, загружают из мерника 12 диэтилацеталь-β-С14-альдегида, затем из мерника 13 медленно добавляют при температуре 35 —40°С этилвиниловый эфир (температура кипения 35°С, остаточная влажность не выше 0,2%), а из мерника 14 — 10%-ный раствор сплавленного хлорис­того цинка в ледяной уксусной кислоте. Реакцию проводят в присутствии азота, вводимого из баллона 15, при температуре 35—40°С в течение 1 ч. В результате реакции образуется этоксиацеталь β-С 16-альдегида (см. хи­мическую схему), представляющий собой (перегонка при остаточном давлении 0,02 мм рт. ст.) вязкое светло-желтое масло, d0 = 0,9315. Выход 66—70%.

Омыление этоксиацеталя. В процессе омыления ацетальной группы происходит также отщепление молекулы спирта. В реактор 11 из мерника 16 добавляют смесь ледяной уксусной кислоты, ацетата натрия, воды и гидрохинона (небольшое количество). Реакционную массу медленно нагре­вают до 90—95° С и перемешивают 3 ч. Затем раствор (темно-вишневого цвета) переводят в реактор-охладитель 17. Охлаждают до 0°, выкристалли­зовывают технический  β-С 1б-альдегид и отфуговывают его в центрифуге 18.

Перекристаллизация технического альдегида С1б. Процессы ведут в этаноле в реакторе 19 по двухступенчатой схеме. После обработки активи­рованным углем раствор фильтруют через нутч-фильтр 20. Кристаллизуют в кристаллизаторе 21, отфуговывают кристаллы в центрифуге 22. Маточ­ный раствор I поступает в сборник 23. Сгущение его производят в вакуум-аппарате 24 и далее кристаллизуют в кристаллизаторе 25. Кристаллы вто­рой кристаллизации отфуговывают в центрифуге 26, а маточный раствор II направляют в сборник 27. Он является отходом производства. Кристаллы второй кристаллизации поступают на перекристаллизацию в реактор 19 совместно с техническим продуктом.

Альдегид-β-С16 (С1бН240) представляет собой светло-желтые кристаллы с температурой плавления 77—78° С, хорошо растворим в органических растворителях, плохо в воде; Хгаах—276—280 нм (в спирте).


СИНТЕЗ β-С19-АЛЬДЕГИДА [9,13-ДИМЕТИЛ-7-(1,1,5-

ТРИМЕТИЛЦИКЛОГЕК-СЕН-5-ИЛ)-ОКТАТРИЕН-8,10,12- АЛЬ-14]

Химические реакции получения альдегида-С19 заключаются в ацетали-зировании альдегида С16, конденсации полученного ацеталя с виниловым эфиром в присутствии хлористого цинка и омыления алкоксиацеталя аль­дегида С19 по следующей химической схеме.

Для успешного протекания указанных реакций необходимы те же усло­вия обезвоживания химических реагентов, как и в синтезе β-С16-альдегида.

Ацетализирование. Процессы проводят так же, как и для синтеза β -С16-альдегида и в аналогичной аппаратуре. К ней относятся реактор 28 и сбор­ники: для альдегида-С16 29, ортомуравьиного эфира 3, катализатора 4, лигроина 6, нейтрализующего раствора бикарбоната натрия 7. Азот в реак­тор подается из баллона 30. Разделение слоев осуществляют в делительной воронке 31 и после просушки органического слоя поташом направляют его в сборник 32 и далее в перегонный аппарат 33, где отгоняют раствори­тель и не вошедший в реактор ортомуравьиный эфир (при температуре 50—55° С и остаточном давлении 2—3 мм рт. ст.). Получают технический диэтилацеталь (3-С,6-альдегида с содержанием основного вещества 95—97%, n° = 1,5026—1,5070; маслянистая жидкость, температура кипения около 145° С при остаточном давлении 0,05 мм рт. ст. Выход 75—80% (в пере­счете на альдегид – С16).

Конденсация с этилпропениловым эфиром. Процесс осуществляют в реакторе 34, в который загружают диэтилацеталь альдегида-С16 из мерни­ка 35, а из мерника 14 раствор (10%) сплавленного хлористого цинка в ле­дяной уксусной кислоте. Масса принимает темно-вишневый цвет. Затем при температуре 25—30°С из мерника 36 медленно добавляют этилпропени-ловый эфир (температура кипения 69—71° С, остаточная влага не выше 0,15%). Масса постепенно окрашивается в желтый цвет. Реакция протекает в' присутствии азота, вводимого из баллона 37, при перемешивании.

Омыление этоксиацеталя. В реактор 34 из мерника 16 добавляют смесь ледяной уксусной кислоты, ацетата натрия, воды и гидрохинона. Реакци­онную массу медленно нагревают до 90—95°С и перемешивают 3 ч. Затем раствор темно-вишневого цвета направляют в реактор-охладитель 38, охлаждают до минус 5—7° С и кристаллизуют. Кристаллы технического про­дукта отфуговывают в центрифуге 39. Получают желтые кристаллы с содер­жанием основного вещества около 95%. Маточный раствор направляют в сборник 40; он является отходом.

Перекристаллизация технического альдегида С19. Процессы ведут в эта­ноле по схеме перекристаллизации альдегида С16 в следующей аппаратуре:

для первого продукта — реактор-растворитель 41, нутч-фильтр 42, кристаллизатор 43, центрифуга 44. для маточного раствора I — сборник 45;

для второго продукта — вакуум-аппарат 46, кристаллизатор 47, цент­рифуга 48, сборник маточного раствора II-—отхода производства — 49.

Выход альдегида на диэтилацеталь составляет 55—57% (от теоретиче­ского). Альдегид β-С19 представляет собой ярко-желтые ромбические крис­таллы с температурой плавления 63—65°С; хорошо растворим в органиче­ских растворителях, плохо — в воде; Хтах=325 нм (в спирте).


СИНТЕЗ 15, 15'-ДЕГИДРО-β-КАРОТИНА

Вещество получают конденсацией альдегида С19 с ацетиленовым комп­лексом Иоцича с последующей дегидратацией образующегося диола С40. Реакцию конденсации начинают с приготовления реактива Гриньяра, который с ацетиленом в среде сухого эфира дает комплекс Иоцича по схеме:

Ацетилен пропускают при температуре 18—20° С до полного исчезнове­ния магний бромэтила, что контролируется реакцией с кетоном Михлера (наличие вызывает изумрудно-зеленое окрашивание). Дегидратацию диола С4о осуществляют в среде сухого серного эфира спиртовым раствором хло­ристого водорода в присутствии азота. Реакции протекают по следующей схема:

Конденсация. В стальной эмалированный реактор 50, снабженный ме­шалкой и обратным холодильником, предварительно тщательно высушен­ный, загружают через люк магниевую стружку из сборника 51, сухой сер­ный эфир (влажность не выше 0,1 %) из мерника 52 и медленно из мерника 53 приливают в течение 1 ч раствор сухого бромистого этила в сухом эфире. Затем в течение 1 ч нагревают реакционную массу до кипения и перемешива­ют до полного растворения магния. Затем охлаждают массу до 15—18° С и в течение 5—6 ч пропускают из баллона 54 предварительно осушенный через вымораживатель 55 ацетилен до получения отрицательной пробы с жетоном Михлера.  Затем реакционную массу охлаждают до  10—12и С и из мерника 56 медленно добавляют раствор альдегида-С19 в сухом эфире так, чтобы температура не превышала 12—13° С. Раствор окрашивается в ярко-оранжевый цвет. Реакция при перемешивании протекает в присутст­вии азота в течение 1,5—2 ч с повышением в конце процесса температуры до 20—25° С. Полноту реакции конденсации определяют по исчезновению альдегида-С19 (реактив Легаля). После этого реакционную массу сливают в реактор-охладитель 57 с ледяной водой, куда из мерника 58 залит хлорис­тый аммоний. Массу сливают в делительную воронку 59. Органический слой промывают водой, просушивают сульфатом натрия из сборника 60 и направляют через сборник 61 в вакуум-аппарат 62. Растворитель удаля­ют в вакууме в токе азота при температуре не выше 30° С и получают  β-С4о-диолин в виде твердого желтого осадка.

Дегидратация. Процесс осуществляют при помощи хлористого водорода. Для этого из мерника 63 сливают в вакуум-аппарат 62 хлористый метилен, растворяют диолин-С4о и переводят раствор в реактор 64, снабженный ме­шалкой и рассольным охлаждением. Массу охлаждают до минус 15—18°С, а затем из мерника 65 постепенно добавляют 8%-ный раствор сухого НС1 в абсолютном спирте с таким расчетом, чтобы температура реакционной массы не превышала к концу процесса +3, +5° С. Затем в делительной воронке 66 отделяют органический слой, промывают его насыщенным раство­ром бикарбоната из мерника 67 и направляют в сборник 68 и далее в вакуум-аппарат 69, где под вакуумом в токе азота при температуре 30—35°С от­гоняют хлористый метилен. Кристаллизующуюся массу направляют в крис­таллизатор 70, где при температуре - 2, - 3°С в течение 8—10 ч в присутст­вии азота выпадают кристаллы 15,15'-дегидро-β-каротина. Последние отфуговывают в центрифуге 71, промывают этиловым спиртом. Выход около 50%. Маточный раствор поступает в сборник 72 и является отходом производства. Вопрос о выделении вещества из маточного раствора еще недоста­точно изучен. 15,15'-дегидро-β-каротин представляет собой кристаллы крас­ного цвета с металлическим блеском; температура плавления 153—154°С; хорошо растворим в органических неполярных растворителях, плохо — в воде; Хтах = 454 и 430 нм; Е =1568 и 1873. Выход 48—50%.


СИНТЕЗ ТРАНС-β-КАРОТИНА

Синтез осуществляют путем гидрогенизации 15,15'-дегидро-β-каротина в растворе толуола на частично отравленном палладиевом катализаторе с целью превращения ацетиленовой связи до этиленовой и получения 15,15'-цис-β-каротина. Изомеризация в среде петролейного эфира превра­щает последний в транс-β-каротин. Для успешного проведения реакции гидрирования необходимо применять тщательно очищенный толуол с при­менением палладиевого катализатора на меле. Реакции протекают по следующей схеме:


15,15'-моно-цис-β-каротин. В реактор 73 из эмалированной стали загружают через люк 15,15'-дегидро-β-каротин, а из мерника 74 толуол и при нагревании до 35—40°С и перемешивании растворяют кристаллы. Затем добавляют палладиевый катализатор, нанесенный на мел. Аппарат дважды продувают азотом из баллона 75, а затем водородом из баллона 76, после чего при температуре 20°С и избыточном давлении до 0,5 кгс/смг при перемешивании осуществляют процесс гидрогенизации. Реакцию конт­ролируют по количеству поглощенного водорода. Далее реакционную мас­су фильтруют через нутч-фильтр 77 и сборник 78, откуда фильтрат направ­ляют в перегонный аппарат 79 для отгонки толуола при вакууме (остаточ­ное давление 8—10 мм рт. ст.) в токе азота. Кубовый остаток сливают в кристаллизатор 80, где при минус 5—8° С выкристаллизовывают 15,15'-моно-цис-β-каротин. Кристаллы выделяют при помощи центрифуги 81; ма­точный раствор поступает в сборник 82 и является отходом производства. Катализатор с нутч-фильтра 77 направляют на регенерацию. Выход цис-Р-каротина составляет 90—95% [70], темно-вишневые кристаллы; темпе­ратура плавления 148—150°С; Хмах=338 (цис-пяк), 450, 480 нм (в гексане).

Транс-β-Каротин. В эмалированный реактор 83, снабженный мешалкой и обратным холодильником, загружают цис-β-каротин, из мерника 84 петролейный эфир (80—90° С), нагревают массу до кипения и продолжают переме­шивать в течение 10—12 ч (изомеризация). Затем сливают в кристаллизатор 85, охлаждают до 0 — минус 2°С и кристаллизуют в течение 6 ч. Крис­таллы выделяют в центрифуге 86, а маточный раствор I направляют в сбор­ник 87 и после сгущения в вакуум-аппарате 88, кристаллизации в кристалли­заторе 89, выделения кристаллов в центрифуге 90 получают дополнительное количество кристаллов транс-β-каротина II, которые поступают для перекристаллизации в кристаллизатор 85. Маточный раствор II является отходом производства.

Перекристаллизация технического транс-β-каротина. Перекристаллиза­цию ведут из петролейного эфира по двухступенчатой схеме: для первой сту­пени — реактор-растворитель 91, нутч-фильтр 92, кристаллизатор 93, цент­рифуга 94, сборник маточного раствора I 95; для второй ступени — вакуум-аппарат 96, кристаллизатор 97, центрифуга 98, сборник маточного раствора II 99. .Кристаллы β-каротина II поступают на перекристаллизацию совместно с техническим β-каротином в реактор-растворитель 91.


Схема синтеза –каротина (объяснения в тексте).


Лекарственные формы витаминов.

Индивидуальные потребности в витаминах отличаются и по этой причине производители выпускают витамины в разной форме. Таблетки - общепринятая, привычная и удобная для применения форда выпуска. Таблетки можно дольше хранить, чем порошки или жидкости.
Капсулы также удобны для хранения и являются общепринятыми формами выпуска жирорастворимых витаминов A, D и Е.

Порошки - поскольку в них отсутствуют наполнители, связующие и другие не имеющие отношение к витаминам вещества, могут быть предпочтительной формой применения при наличии у кого-то аллергических реакций. И кроме того, порошки могут "вмещать" большие дозировки витаминов. Одна чайная ложка порошка витамина С может содержать до 4.000 мг витамина.

Жидкости - хороши тем, что легко смешиваются с напитками и удобны для тех, кто не может глотать капсулы и таблетки.

Вдыхание витаминов через нос - обеспечивает весьма быстрое усвоение витаминов С и группы В. Пластыри и имплантанты, содержащие витамины, удобны тем, что могут обеспечить продолжительное и дозированное применение, и в скором времени, возможно, будут более широко применяться.

Сухая или водорастворимая форма?

Жирорастворимые витамины A, D, Е и К могут быть произведены в «сухом», то есть в водорастворимом виде. Такие формы выпуска этих витаминов рекомендуются тем, кто страдает расстройством желудка после приема масел или имеет некоторые кожные расстройства, проявляющиеся, например, в виде сьшей или прыщей. Указанные формы выпуска показаны и тем, кто соблюдает диету с исключением из рациона большинства жиров. Поскольку для нормальной ассимиляции, то есть усвоения, жирорастворимым витаминам нужен жир, я советую вам использовать "сухую" форму витаминов A, D, Е, К обязательно в том случае, если вы находитесь на диете с низким содержанием жира. Синтетическое или натуральное, неорганическое или органическое?

   Приобретение и прием синтетических витаминов не сказывается на вашем бюджете, но может неблагоприятно отозваться на вашем желудке, в то время как натуральные витамины, принимаемые даже в больших дозировках, ничего подобного не вызывают. Химическая структура витаминов в том и другом случае может выглядеть одинаково, но не одним лишь этим обусловлена эффективность натуральных витаминов, но и тем, что связано с этими веществами в природе. Синтетический витамин С - это лишь аскорбиновая кислота и ничего больше. Натуральный же витамин С, получаемый из плодов шиповника, содержит еще и биофлавоноиды, то есть целый комплекс витамина С, что делает его намного более эффективным.

Натуральный витамин Е, который может включать в себя не только альфа-токоферол, но и другие токоферолы, оказывается более эффективным, чем его синтетический аналог. Вот что говорит по этому поводу известный аллерголог доктор Герон П. Рандольф: «Синтетически полученное вещество может вызвать реакцию у людей, чувствительных к химическим соединениям, в то время как то же вещество натурального происхождения переносится хорошо, хотя химическая структура этих двух веществ идентична». Тот, кто принимал и те, и другие витамины, мог на собственном примере убедиться в том, что после приема натуральных веществ наблюдалось меньше желудочно-кишечных расстройств. Что особенно важно: в отличие от синтетических препаратов натуральные витамины не вызывают токсических реакций, даже когда они принимаются в дозах, превышающих рекомендуемые.

Разница между неорганическим и органическим - это не то же самое, что разница между синтетическим и натуральным, хотя нередко кое-кто так и думает. Все витамины являются органическими веществами и, как полагается таковым, содержат углерод. Минеральные же вещества являются неорганическими. Они не содержат углерод, но существуют органические соединения железа-глюконат, пептонат и цитрат железа. А вот сульфат железа, например, является его неорганическим соединением. 

Что такое хелатирование?

Хелатирование - это процесс, при помощи которого минеральные вещества превращаются в хорошо усвояемую форму. Такие минеральные добавки, как костная мука и доломит, прежде чем могут быть усвоены организмом, должны подвергнуться процессу хелатирования в желудочно-кишечном тракте. Нередко бывает так, что естественный процесс хелатирования в организме нарушается и поэтому большая часть принятых внутрь минеральных веществ не усваивается. Если помнить еще и о том, что организм не полностью использует все поступающие питательные вещества, тогда важность приема хелатированных минералов станет очевидной. Как правило, организмом усваивается только от 2 до 10 процентов поступающего с пищей неорганического железа и к тому же половина оставшегося позже также выводится. Усвояемость хелатированных минеральных веществ в три-десять раз больше, чем нехелатированных, поэтому это оправдывает некоторое увеличение их цены.


Пролонгированные формы.

Шагом вперед в производстве витаминов была разработка добавок в пролонгированной (time release) форме. Пролонгирование - это процесс, при помощи которого витамины заключаются в микрокапсулы, затем связываются в специальной основе, что обеспечивает их постепенное непрерывное выделение, всасывание и усвоение в течение 8-12 часов. Большинство витаминов - водорастворимые - и поэтому не могут накапливаться в организме. Если они используются не в пролонгированной форме, то быстро всасываются, попадают в кровоток и независимо от дозы в течение 2-3 часов выделяются с мочой. Добавки в пролонгированной форме могут обеспечить оптимальную эффективность витаминов, уменьшить их потерю с мочой и поддерживать стабильные уровни витаминов в крови круглосуточно.


Страницы: 1, 2


реферат скачать
НОВОСТИ реферат скачать
реферат скачать
ВХОД реферат скачать
Логин:
Пароль:
регистрация
забыли пароль?

реферат скачать    
реферат скачать
ТЕГИ реферат скачать

Рефераты бесплатно, курсовые, дипломы, научные работы, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.