![]() |
|
|
Исследование электрохимического поведения ионов самария в хлоридных и хлоридно-фторидных расплавахэлектропроводности от температуры. Найденные по методу наименьших квадратов значения статистических коэффициентов a и b и рассчитанные по ним значения удельной электропроводности трихлоридов РЗМ при 900(С [ 26 ] приведены в табл. N5. Таблица N5 Значения статистических коэффициентов a и b в уравнении x=a+bT для трихлоридов РЗМ. LnCl3 -a b(103 Темп. интер вал,(С (900(C), Ом-1(см-1 LaCl3 1,422 3,04 855-960 1,314 CeCl3 1,155 2,74 824-939 1,311 PrCl3 1,247 2,82 773- 908 1,291 NdCl3 0,842 2,14 765-926 1,084 SmCl3 1,005 2,39 644-822 1,146 EuCl3 0,963 2,39 625-810 1,189 GdCl3 0,796 1,85 610-883 0,869 TbCl3 0,896 1,94 583-898 0,850 DyCl3 0,963 1,94 642-851 0,783 HoCl3 0,929 1,82 719-931 0,709 ErCl3 1,022 1,87 756-952 0,661 TmCl3 1,027 1,79 794-992 0,584 YbCl3 0,876 1,77 850-960 0,715 LuCl3 1,051 1,69 884-1005 0,470 Электропроводность трихлоридов в ряду от лантана до лютеция (рис. 2.4) уменьшается, что объясняется возрастающей способностью к комплексообразованию ионов Ln3+ за счет лантаноидного сжатия. Однако изменение электропроводности в ряду РЗМ немонотонно. Можно четко выделить четыре сегмента: La - Nd, Nd - Gd, Gd - Ho, Ho - Lu (по два в цериевой и иттриевой подгруппах РЗМ). Подобное деление ряда РЗМ получило название "тетрадного эффекта" [ 27, 28 ], обусловленного дестабилизацией ионов Nd3+, Gd3+, Ho3+. Аномально высокие значения электропроводности трихлоридов Sm, Eu, Yb объясняются устойчивостью двухвалентных ионов данных РЗМ как в твердом, так и в жидком состояниях, обладающих меньшей способностью к комплексообразованию. Для всех исследованных составов системы LiCl - KCl - SmCl3 температурные зависимости удельной электропроводности ( ), плотности (() и поверхностного натяжения (() описываются уравнениями вида [ 29 ]: x = a + bT ( 1 ) Значения коэффициентов уравнений находятся методом наименьших квадратов; они приведены в таблице N6. Из экспериментальных данных по плотности и удельной электропроводности рассчитаны значения молярной электропроводности ((). На рис. 2.5 показана изотерма молярной электропроводности расплава LiCl - KCl - SmCl3 при 1050К. Как видим, при добавлении 10-15% (мол.) SmCl3 молярная электропроводность смеси резко падает. При содержании в расплаве 15-65% (мол.) SmCl3 молярная электропроводность системы изменяется незначительно. Дальнейшее увеличение концентрации трихлорида самария приводит к более резкому снижению молярной электропроводности. Подобная зависимость молярной электропроводности от состава наблюдается в системах LiCl - KCl - PrCl3 [ 30 ] и LiCl - KCl - NdCl3 [ 31 ]. Таблица N6 SmCl3, % мол. а b(103 ((xТемператур. интервал, К 1 2 3 4 5 (10-2, Ом-1(м-1 2,34 -1,465 4,135 0,029 770-1070 8,45 -1,468 3,756 0,007 770-1070 17,71 -1,163 3,098 0,011 770-1070 33,43 -1,470 2,933 0,009 860-1070 46,27 -1,723 3,018 0,012 840-1070 65.96 -1,802 2,858 0,015 820- 1070 77,13 -1,879 2,856 0,011 870-1070 87,44 -1,842 2,658 0,009 910-1070 100 -1.768 2,449 0,004 960-1070 ((10-3, кг/м3 2,34 2,136 -0,540 0,009 770-!070 8,45 2,409 -0,638 0,012 770-1070 17,71 2,635 -0,648 0,009 770-1070 33,43 2,886 -0,636 0,009 860- 1070 46,27 3,204 -0,714 0,011 840-1070 65,96 3,608 -0,762 0,008 820-1070 77,13 3,828 -0,800 0,010 870-1070 87,44 3,977 -0,783 0,012 910-1070 1 2 3 4 5 ((103, Н/м 2,34 134,8 -24,6 0,3 770-1070 8,45 128,9 -28,5 0,6 770-1070 17,71 127,5 -37,3 0,5 770-1070 33,43 154,3 -63,2 0,4 860-1070 46,27 148,0 -56,7 0,6 840-1070 65,96 136.9 -44,7 0,8 820-1070 77,13 147.0 -53,2 0,7 870-1070 87,44 172,9 -77,0 0,6 910-1070 100 218,5 -119,6 0,5 960-1070 На рис. 2.6 показана изотерма поверхностного натяжения системы LiCl - KCl - SmCl3, построенная по экспериментальным данным для 1050К (см. табл. N6). Штриховой линией изображена изотерма, рассчитанная по уравнению Жуховицкого - Гуггенгейма для идеального раствора. Как видим, изотерма поверхностного натяжения имеет экстремальный вид с максимумом в области малых концентраций SmCl3, что можно объяснить протеканием в расплаве следуюших процессов. При добавлении в эвтектику LiCl - KCl хлорида самария происходит вытеснение ионов Li+ из первой координационной сферы во вторую с образованием комплексных ионов типа SmCl63-. Это ведет к накоплению в расплаве относительно "свободных" катионов Li+ и увеличению поверхностного натяжения расплава по сравнению с рассчитанным для идеального раствора. При повышении концентрации SmCl3 в смеси уменьшается число "свободных" катионов Li+ , растет число комплексных ионов на основе катиона Sm3+ , поверхностное натяжение при этом резко уменьшается. В дальнейшем, по мере роста концентрации в расплаве трихлорида самария происходит перестройка комплексных ионов. Образуются ионы SmCl52-, Sm2Cl7-, что приводит к отрицательным отклонениям поверхностного натяжения по сравнению с рассчитанным по уравнению для идеального раствора. В последнее время были проведены исследования взаимодействия в системах РЗМ - солевой расплав; также исследовались термодинамические свойства систем РЗЭ с другими металлами. Для примера приведем системы Ln - Co и Ln - Ni. В качестве характеристики взаимодействия металлов с Ni и Co [ 22 ] использовали изменение массы образца - подложки (Ni или Co), которая в исследованных условиях описывается уравнением вида: P = K(n ( 2 ) где Р - изменение массы образца; ( - продолжительность процесса; n - показатель степени; К - константа скорости процесса: E K = K0 exp ( ( ) ( 3 ) RT Т - температура процесса; К0 - коэффициент; R - универсальная газовая постоянная; Е - энергия активации процесса. Анализ уравнения ( 2 ) показал, что для большинства исследованных систем Ме - Ln (Mе - Co, Ni; Ln - Y, La, Ce, Pr) значения показателя степени n близки к 0,5. Параболическая зависимоть изменения массы образцов от времени свидетельствует о том, что лимитирующей стадией процесса является диффузия в твердой фазе. Константа скорости К, при одинаковых температурах, в 3-5 раз выше для систем Co - Ln. Наименьшее значение К наблюдается при образовании сплавов лантана. Энергия активации процесса Е максимальна для системы Co - Pr (95(5) и минимальна для системы Ni - La (54(2)кДж/моль. Исследование взаимодействия РЗЭ и их цинковых сплавов с расплавом LiCl - KCl показало, что скорость коррозии РЗЭ из цинковых сплавов значительно ниже скорости коррозии металлов и при 973К для большинства РЗЭ составляет (3-5)(10-3, для Sm - 12(10-3 и для Yb - 38(10-3 г/см2(ч. В литературе есть сведения о термодинамических свойствах соединений самария, богатых легкоплавким металлом (ЛПМ) [ 32 ]. Однако они получены измерениями ЭДС гальванического элемента Sm - Inн.р. | KCl - LiCl + SmCl2 | Sm - ЛПМн.р. ( 4 ) в котором для пересчета использованы сплавы Sm c Zn c известными термодинамическими свойствами [ 33 ]. По результатам прямых измерений потенциалов насыщенных растворов Sm - In и Sm - Bi относительно металлического самария для реакций Sm(тв.) + 2In(ж.) ( SmIn2(тв.) ( 5 ) Sm(тв.) + 2Bi(ж.) ( SmBi2(тв.) ( 6 ) рассчитаны [ 34 ] температурные зависимости парциальных значений энергий Гиббса самария в соединениях SmIn2 и SmBi2. _ SmIn2 (GSm = -258,3 + 130,2(10-3T ( 0,2 (кДж/моль) ( 7 ) _ SmBi2 (GSm = -247,8 + 71,9(10-3T ( 0,2 (кДж/моль) ( 8 ) С учетом зависимостей ( 7 ), ( 8 ) и результатов измерений ЭДС гальванического элемента ( 4 ), получены новые значения термодинамических характеристик соединений самария с ЛПМ. рис. 2.4. Электропроводность трихлоридов РЗМ. рис. 2.5. Изотерма молярной электропроводности расплава LiCl - KCl - SmCl3 при 1050К. рис. 2.6. Изотерма поверхностного натяжения системы LiCl - KCl - SmCl3 (Т=1050К). 2.4 Электрохимическое поведение ионов РЗМ в галогенидных расплавах. Первые попытки электролитического получения РЗМ из их расплавленных соединений были сделаны в конце 19в. Были получены Ce и La в довольно чистом состоянии и больших количествах. Трудности получения тяжелых РЗМ связаны, главным образом, с высокой летучестью расплавов их соединений [ 35 ]. Дальнейшие исследования связаны, в основном, с усовершенствованием технологии получения чистых РЗМ. Для получения металлов группы лантана, имеющих сравнительно низкую температуру плавления (La, Ce, Pr, Nd) используется процесс электролиза в расплаве хлоридов [ 36 ]. Металлы с более высокой температурой плавления (Sm, Gd, Dy, Y) получают из оксидов методом электролиза в расплаве фторидов. Фториды Sm, Eu, Tm и Yb восстанавливаются не полностью, поэтому эти металлы получают восстановлением оксидов с помощью La или мишметалла, имеющих более низкое давление паров. Предложено получать РЗМ [ 37 ], преимущественно Nd или сплавы Nd - La, Nd - Ce, Nd - Pr, а также сплавы РЗМ с переходными металлами, методом электролиза солевой ванны, состоящей из 10-70% (предпочтительно 15-45%) хлорида РЗМ, хлоридов и фторидов ((15%) щелочных и щелочно-земельных металлов (в частности, лития), при температуре 650-1100(С (предпочтительно 700-900(С), напряжении 4-10 В и Da = 100-250 A/дм2 и Dk = 70-700 А/дм2. Степень извлечения металла достигает 80%. Также был проведен ряд исследований по изучению механизма электровосстановления ионов РЗМ из расплавов солей. Показано [ 38 ], что электровосстановление ионов La3+ до металла происходит в одну трехэлектронную стадию. Электродный процесс контролируется скоростью переноса заряда и осложнен последующей быстрой необратимой химической реакцией. Длительная выдержка металла в расплаве NaCl - KCl - LaCl3 не приводит к образованию ионов лантана низшей валентности. Изучено влияние условий электролиза (ik, t, состав расплава) на выход по току церия при его электролитическом производстве электролизом хлоридного расплава на основе эвтектической смеси LiCl - KCl (42 мол.% KСl) или NaCl - KCl (50 мол.% каждого) [ 39 ], При увеличении температуры расплава от 850 до 1000(С выход по току церия сначала возрастает, а затем уменьшается; максимальный выход по току наблюдался при температуре 900(С. При увеличении содержания CeCl3 в раплаве от 10 до 50% выход по току церия возрастает от 0 до (61,8% (расплав NaCl - KCl, ik = 9 А/см2, 900(С). Оптимальный диапазон концентраций CeCl3 составляет 30-50%. При повышении п*************************************************************************** **************************************************************************** **************************************************************************** **************************************************************************** ****************************************************** **************************************************************************** **************************************************************************** **ку процесса осаждения зависит от i и соcтава электролита, уменьшаясь с ростом плотности тока (0,22-0,86 А/см2) от 92 до 89 и от 81 до 32 % при использовании MgZn и Mg3Cd2 - катодов соответственно. Более резкий спад выхода по току в случае Mg - Cd катода связывается с замедленностью растворения неодима в данном металлическом расплаве. Анодным растворением жидких сплавов Zn - Ln установлено [ 22 ], что Y, La, Nd, Er, Dy окисляются с образованием трехзарядных, Sm и Yb - двухзарядных ионов, а при окислении церия, наряду с ионами Ce3+ образуются ионы Ce2+, доля которых с ростом температуры увеличивается. Учитывая способность лантаноидов к комплексообразованию можно предположить, что коррозия и анодное растворение Y, La, Nd, Er, Dy сопровождается образованием в расплаве ионов LnCl63-, Sm и Yb - LnCl53-, a Ce - смесью CeCl63- и CeCl53- . Анализ литературы показывает, что электрохимические свойства расплавленных систем, содержащих ионы ионы самария, практически не исследованы. В частности, исследованию электрохимического поведения трехвалентного самария в хлоридных расплавах посвящена всего одна работа [ 41 ]. Несколько лучше обстоит дело с исследованием электрохимических свойств иона Sm2+ в расплавах солей. Измерение равновесных потенциалов Sm в расплавленных хлоридах щелочных металлов при высоких температурах практически невозможно из-за интенсивного растворения металла. Специальными исследованиями показано, что необратимый процесс вытеснения щелочного металла из эквимолярного расплава KCl - NaCl самарием протекает с высокой скоростью (например, при 1010К она составляет 3,0 г/cм2(ч). Поэтому для определения термодинамических характеристик эквимолярного расплава KCl - NaCl, содержащего самарий, измеряли равновесные потенциалы его сплавов с алюминием, активность самария в которых сильно понижена [ 32 ]. Анализ концентрационных зависимостей равновесных потенциалов сплавов при постоянной температуре (с учетом [ 32 ] ) позволил сделать вывод, что в исследуемом интервале температур в равновесии со сплавом находятся ионы Sm(II). По экспериментальным данным рассчитаны условные стандартные потенциалы самария [ 42 ]. RT [Sm2+] E*Sm2+/Sm = EpSm(Al) - (( ln (((( ( 9 ) 2F aSm(Al) где EрSm2+/Sm(Al) - равновесный потенциал сплава Sm c Al, аSm(Al) - активность Sm в сплаве. После обработки данных методом наименьших квадратов получена температурная зависимость условного стандартного потенциала самария: E*Sm2+/Sm = (-4,412 + 9,70(10-4T)( 0,001, В ( 10 ) Сведения о растворимости самария в жидком индии ограничены [ 32, 43 ]. Это связано с чрезвычайно высокой активностью металлического самария и большой электроотрицательностью ионов самария в расплаве солей. Металлический самарий способен восстанавливать щелочные металлы в расплаве. Длительная выдержка самарийсодержащих сплавов может приводить к значительной его коррозии. Поэтому для точного определения величины растворимости и других характеристик самарийсодержащих систем электрохимическими методами необходимо применять сплавы самария с другими металлами, в которых активность самария понижена. Определение растворимости самария в жидком индии при кратковременных выдержках сплавов в электролите сводилось к измерениям ЭДС гальванического элемента концентрационного типа [ 44 ]: Sm - In(н.р.) |KCl - NaCl + 3% мас. SmCl2| Sm - In(разб. р-р) ( 11 ) Температурная зависимость растворимости самария в жидком индии в координатах lg Xнас. - 1000/Т представляет собой прямую линию. Растворимость самария в жидком индии при 1000 и 1100К составляет 4,67(10-4 и 1,02(10-3 ат.%, по результатам работ выполненных методом ЭДС [ 32 ], фильтрацией [ 43 ] - 1,16(10-3, 1,77(10-3 и 2,95(10-3; 3,87(10-3 ат.% соответственно. В 60-70-х гг. исследовательский центр PENO Горного бюро США выполнил ряд работ по электролитическому получению РЗМ, иттрия и их сплавов электролизом их оксидов, растворенных в расплавленных смесях фторид РЗМ - LiF (иногда с добавкой BaF2) [ 45 ]. Растворимость оксидов РЗМ в таких электролитах составляет 2-4%. Электролиз для получения Nd, Pr, Gd, Y вели в графитовых тиглях со стержневыми графитовыми анодами и катодами из вольфрама. Электролиз при t ( 1120(C сопровождался заметным взаимодействием РЗМ с электролитом и графитом. С целью снижения рабочей температуры электролиз вели с получением относительно легкоплавких бинарных сплавов РЗМ, используя катоды из Fe, Co, Mn. Этим способом получали сплавы Fe - Y, Fe - Dy, Co - Sm, Co - Y, Co - Nd, Co - Dy, Mn - Y, Mn - Gd. 2.5 Постановка задачи. Анализ литературных данных показывает, что электрохимическое поведение иона Sm3+ в галогенидных расплавах практически не изучено; в теоретическом аспекте данной проблемы остаются невыясненными механизм и характер электродных процессов восстановления иона самария расплавах, а также кинетические закономерности протекания этих процессов. Самарий в галогенидных расплавах существует в виде ионов Sm3+ и Sm2+ , что в значительной степени может повлиять на его электрохимическое поведение. Вместе с тем известно, что переход от хлоридных к хлоридно - фторидным комплексам стабилизирует высшую степень окисления самария (Sm3+ -ион), что также может повлиять на механизм электровосстановления ионов Sm3+. Поэтому задачей нашей работы является выяснение механизма и характера процесса электровосстановления ионов Sm3+ в хлоридных и хлоридно - фторидных расплавах. Глава II Методы исследования и методика проведения эксперимента. 3.1 Выбор электролитических методов исследования электродных процессов в расплавленных средах и применения аппаратуры. В последние несколько лет наблюдается развитие теории и практики электрохимических методов исследования. Согласно общей классификации электрохимических методов анализа, предложенной ИЮПАК [ 46 ], методы, в которых изучаются электродные реакции, подразделяются на два подкласса: 1. Методы, в которых возбуждаемый электрический сигнал постоянен или равен нулю, как например, потенциометрия; 2. Методы, в которых возбуждаемый сигнал меняется во времени. Методы второго подкласса в свою очередь можно разделить на две группы. В методах первой группы используются большие переменные сигналы, причем "большие" означает более удвоенного значения 2,3RT/F. В эту группу входят все методы, в которых происходит изменение потенциала или тока, например, вольтамперометрия и ее варианты, полярография и большинство ее вариантов, а также некоторые хронопотенциометрические методы. Во вторую группу входят все методы, в которых используются малые сигналы, где "малые" означает сигналы с амплитудами, меньшими, чем 2,3RT/F: это переменно-токовая и квадратно-волновая полярография. Методом исследования электровосстановления ионов РЗМ нами выбрана вольтамперометрия (ВА). Она включает группу электрохимических методов, в которых контролируемый параметр - потенциал индикаторного электрода - меняется во времени, а измеряемой величиной является ток, протекающий через индикаторный электрод. Под вольтамперометрией понимается большая группа методов изучения кинетики электродных процессов, в которых во времени изменяется потенциал исследуемого электрода (обычно по линейному закону) и измеряется ток, протекающий через электрохимическую ячейку. Частью вольтамперометрического метода является полярография. В настоящее время под полярографией понимаются вольтамперометрические исследования с применением жидких капельных электродов (в основном - ртутных). Применение полярографии к расплавленным средам затруднено по ряду причин, главным образом, высокой летучестью ртути. Полярографические кривые трудно воспроизводятся и на них недостаточно четко выражены области предельных токов. Величины потенциалов разложения не совпадают, как правило, с ЭДС соответствующих обратимых гальванических цепей. Это объясняется отсутствием |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, курсовые, дипломы, научные работы, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |