![]() |
|
|
Мощные силовые диодыМощные силовые диодыВступление Полупроводниковый
диод, двухэлектродный электронный прибор на
основе полупроводникового (ПП) кристалла. Понятие «Полупроводниковый
диод» объединяет различные приборы с разными
принципами действия, имеющие разнообразное назначение. Система классификации Полупроводниковый
диод соответствует общей системе классификации полупроводниковых приборов. В
наиболее распространённом классе электропреобразовательных Полупроводниковый
диод различают: выпрямительные диоды, импульсные
диоды, стабилитроны, диоды СВЧ (в т. ч. видеодетекторы, смесительные,
параметрические, усилительные и генераторные, умножительные, переключательные).
Среди оптоэлектронных Полупроводниковый диод выделяют фотодиоды, светоизлучающие диоды и ПП квантовые генераторы. Выпрямительные диоды В настоящее время, в качестве выпрямительных диодов используют твердотельные устройства, они характеризуются малыми габаритами, малым падением напряжения и высокой надежностью. Но во многих публикациях отмечалось, что усилитель, снабженный выпрямителем на твердотельных диодах, звучит хуже, чем этот же усилитель с выпрямителем на вакуумных диодах. Одной из причин этого является возникновение высокочастотных колебаний с широким спектром во время процесса запирания диода при смене на нем полярности приложенного напряжения. Упрощенно, не углубляясь в физику работы полупроводникового диода (процессы коммутации диодом тока весьма сложны), механизм возникновения помех объясняется протеканием через диод обратного тока и резким его прерыванием в момент запирания. На рисунке 7 показана временная диаграмма тока, текущего через диод при его запирании. При протекании через диод прямого тока (диод открыт) в области базы происходит накопление избыточных зарядов. По мере уменьшения разности потенциалов на выводах диода ток через него уменьшается и в точке А становится равным нулю. Но диод еще не заперся, и при смене полярности на его электродах через диод будет протекать реверсный ток, рассасывающий избыточный заряд в области базы, падение напряжения на диоде приблизительно равно прямому падению. Когда базовый заряд станет равным нулю, прямое напряжение на диоде резко изменяется на обратное. Этот момент запирания диода соответствует точке В на диаграмме. Как видно из диаграммы, процесс установления обратного сопротивления происходит очень быстро (~0.3 µS) и сопровождается прерыванием тока, что и вызывает возникновение паразитных колебаний.
Амплитуда реверсного тока существенно зависит от избыточного заряда базы, который, в свою очередь, зависит от величины прямого тока через диод и конструктивных параметров диода, связанных с площадью кристалла [2]. Поэтому, часто встречающаяся в литературе рекомендация использовать для выпрямителя мощные низкочастотные диоды совершенно справедлива и позволяет уменьшить паразитные колебания. Это происходит за счет снижения избыточного заряда базы, то есть снижения амплитуды реверсного тока и более медленного процесса восстановления обратного сопротивления. Однако, используя мощные, низкочастотные полупроводниковые диоды следует учитывать, что они имеют очень большую барьерную емкость, которая может, как уменьшить величину паразитных колебаний, так и привести к их возрастанию. Характер ее влияния зависит как от режима работы диода, так и от цепей, к которым он подключен. Существует еще один способ демпфирования паразитных колебаний, очень часто использующийся в импульсных преобразователях. Это шунтирование диода демпфирующей RC цепью (рисунок 8), обеспечивающей подавление паразитных колебаний и их быстрое затухание. Точный расчет значений R и C довольно сложен, величина C, лежит в пределах 100 ÷ 10000 pF, R – 10 ÷ 100 Ом. Чем меньше величина выпрямленного напряжения, тем больше величина C и меньше R. Для источников питания ламповых усилителей средней мощности в качестве выпрямительных диодов целесообразно использовать вакуумные диоды. Их основным преимуществом является отсутствие эффекта протекания реверсного тока [4], что обеспечивает полное отсутствие паразитных колебаний в моменты коммутации тока. Высокое динамическое сопротивление вакуумного диода, которое часто определяется как его недостаток, в нашем случае, становится достоинством, так как эффективно демпфирует импульсы тока, потребляемого емкостным фильтром. Возможно, именно различием динамических сопротивлений можно объяснить некоторое различие в звучании усилителя с разными типами вакуумных диодов. Если Вы используете твердотельные диоды, то при небольших выпрямленных токах и высоких напряжениях целесообразно включить последовательно с каждым из них активное сопротивление величиной 30 ÷ 100 Ом. Это не только уменьшит амплитуду импульса потребляемого тока, но и существенно улучшит режим коммутации диода, естественно ценой этому будет снижение КПД. Еще одним достоинством вакуумного диода является очень маленькая (4 ÷ 6 pF) и практически независимая от обратного напряжения проходная емкость. Также немаловажным фактором является плавное нарастание анодного напряжения при включении схемы. Недавно появившиеся высоковольтные диоды на основе карбида кремния [5] обладают временем восстановления обратного сопротивления равным нулю, и по этому параметру сравнялись с вакуумными диодами. Возможно, это поставит точку в затянувшемся споре, какой тип лучше использовать в высоковольтных выпрямителях аудио аппаратуры, но пока нет какой- либо информации об использовании этого типа диодов в аудио аппаратуре и влиянии их на качество звука. Пример научного исследования оптимизации и повышения мощности в одномодовом режиме генерации для лазерных диодов мезаполосковой конструкции, выполненных на основе квантово-размерных InGaAsP/InP-гетероструктур раздельного ограничения. В предыдущем пункте было немного сказано о диодах, выполненных на основе квантово-размерных InGaAsP/InP-гетероструктур раздельного ограничения. Группа ученных провела ислледование, сязаное с повышением качества работы этих диодов. Экспериментально и аналитически исследованы возможности достижения максимальной оптической мощности излучения в одномодовом режиме генерации для лазерных диодов мезаполосковой конструкции, выполненных на основе квантово-размерных InGaAsP/InP-гетероструктур раздельного ограничения. Показано, что основным требованием обеспечения одномодового режима работы в широком диапазоне токов накачки для лазерных диодов является точный выбор значений скачка эффективного показателя преломления AnL в плоскости, параллельной р-n переходу. Методом МОС-гидридной эпитаксии разработана InGaAsP/InP-гетероструктура раздельного ограничения со ступенчатым волноводом с пороговой плотностью тока 180 А/см2 и внутренним квантовым выходом стимулированного излучения 93-99%. Проведена оптимизация мезаполосковой конструкции лазерного диода для разработанной InGaAsP/InP-ге-тероструктуры, с целью достижения максимальной оптической мощности в одномодовом режиме генерации. Достигнута выходная непрерывная мощность излучения 185 мВт при одномодовом режиме работы лазерного диода с шириной мезаполоска W = 4.5 мкм (2 = 1480 нм), максимальная непрерывная мощность составила 300 мВт. Полуширина излучения параллельного дальнего поля возросла на 1° относительно порогового значения. 1. Введение В последнее время резко возрос интерес к мощным лазерным диодам, излучающим в диапазоне длин волн 1300-1600 нм в нулевой продольной оптической моде. В первую очередь это связано с их применением в волоконно-оптических линиях связи, в качестве источников накачки волоконно-оптических усилителей, легированных Er3+, и рамановских волоконных усилителей в диапазоне длин волн 1400-1500 нм [1]. Для таких применений лазерных диодов необходимы постоянная выходная рабочая мощность на уровне сотен милливатт, точная пиковая длина волны излучения, высокая излучательная эффективность лазерного диода и эффективность ввода в одномодовое оптическое волокно. Все эти требования необходимо учитывать в разработке одномодовых лазерных диодов. До настоящего момента в мире лишь несколько компаний (Furukawa Electric, JDS-Uniphase, Princeton Lightwave) заявили о достижении более 300 мВт максимальной выходной оптической непрерывной мощности в одномодовом режиме [2–4]. При этом основным критерием одномодовости являлось сохранение полуширины и формы поля в дальней зоне излучения, начиная с порога генерации и выше. В связи с этим достижение значений максимальной выходной мощности одномодо-вого излучения в непрерывным режиме генерации более чем 300 мВт (комнатная температура) для лазерных диодов, излучающих в диапазоне длин волн 1.3-1.6 мкм, является актуальной задачей. Цель данной работы состояла в исследовании, разработке и изготовлении мощных одномодовых лазеров на основе квантово-размерных InGaAsP/InP-гетерострук-тур, излучающих в диапазоне длин волн 1300-1600 нм. Разработка конструкции и изготовление одномодовых лазерных диодов, т.е. диодов, излучающих на нулевой поперечной оптической моде, представляет комплексную задачу. Для ее решения необходимо выполнение многих требований. Во-первых, это использование тщательно проработанного дизайна лазерной гетерострукту-ры, обеспечивающего минимальные значения внутренних оптических потерь (аг), напряжения отсечки (Uc) и максимального внутреннего квантового выхода стимулированного излучения (д). Как показали наши предыдущие исследования [5,6], квантово-размерная двойная гетероструктура раздельного ограничения (КР РО ДГС) InGaAsP/InP является оптимальной для достижения максимальной оптической мощности излучения лазерного диода с одиночной апертурой (Я = 1.3 -1.6 мкм). Использование ступенчатого волновода в КР РО ДГС InGaAsP/InP позволяет достичь близких к 100% значений внутреннего квантового выхода стимулированного излучения. Это связано с уменьшением компоненты тока утечек электронов за порогом, обусловленной уходом носителей из области квантовой ямы к гетерогранице волновода с /-эмиттером [6,7]. КР двойные гетероструктуры раздельного ограничения InGaAsP/InP, схематическое изображение типичной зонной диаграммы которых приведено на рис. 1, изготавливались методом МОС-гидридной эпитаксии [8]. Рис. 1. Схематическая энергетическая зонная диаграмма квантово-размерной гетероструктуры раздельного ограничения InGaAsP/InP (сплошная линия), расчетные профили легирования для донорной примеси кремния (пунктирная) и акцепторной примеси цинка (штрих-пунктирная). Гетероструктуры состояли из широкозонных, сильно легированных эмиттеров, роль которых играли слои п- и /?-InP; ступенчатого волновода, выполненного на основе четверных твердых растворов In-Ga-As-P (Е w1 = 1.03 эВ, Е w2 = 1.24 эВ) с общей толщиной 0.65 мкм; активной области, образованной двумя напряженными InGaAsP-квантовыми ямами (cIqW — 65 A) с InGaAsP-барьерным слоем между ними (Е ъ = 1.03 эВ, db = 200 A). В верхнем /?-InP-эмиттере выращивался стоп-слой InGaAsP толщиной 70 A, который служил для остановки химического травления гетероструктуры при изготовлении мезаполосковой конструкции лазерного диода. Второй основной задачей для достижения режима работы лазерного диода на фундаментальной оптической моде является выбор его конструкции, обеспечивающей возможность формирования волновода в плоскости, параллельной р-^-переходу. Из всего многообразия конструкций лазерных диодов наиболее эффективными для достижения волноводного эффекта в горизонтальном направлении являются мезаполосковая конструкция и конструкция „зарощенная меза“ [2,3]. Мезаполосковая конструкция лазерного диода отличается своей надежностью, простотой изготовления и малыми дополнительными внутренними потерями, вносимыми при формировании мезаполоска [9]. Одно из преимуществ зарощен-ной конструкции — это возможность достижения сверхнизких пороговых токов и лучшие частотные характеристики [2]. Однако ее серьезным недостатком являются технологические трудности, связанные с практической реализацией [2]. Это в основном и предопределило наш выбор в пользу мезаполосковой конструкции. |
|
|||||||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, курсовые, дипломы, научные работы, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |