![]() |
|
|
Мощные силовые диодыФормирование горизонтального волновода в плоскости, параллельной р-/7-переходу лазерной гетероструктуры, достигается за счет создания скачка эффективного показателя преломления AnL между активной и пассивной областями мезаполоска. Для обеспечения од-номодового режима работы лазерного диода необходимо выбрать вполне определенное значение AnL. В мезаполосковой конструкции лазерного диода на основе КР РО ДГС AnL в основном зависит от следующих параметров: длины волны излучения (Я), ширины мезаполоскового контакта (W), глубины травления (Ah), толщины (Dw) и ширины запрещенной зоны (Е™) волноводных слоев. Концентрация свободных носителей в слоях гетероструктуры и реальная температура в области активного слоя также влияют на значение AnL. Расчет профиля эффективного показателя преломления AnL в мезаполосковой конструкции лазерного диода на основе КР РО ДГС InGaAsP/InP выполнялся с помощью модели пассивного волновода [10]. В основании используемой модели лежит представление волноводных свойств в горизонтальном направлении через эффективные показатели преломления отдельно активной и пассивных областей лазера мезаполосковой конструкции. Расчет проводился для разных значений параметров Я, Е™, Dw и ДА гетероструктуры. Условия сохранения оптимальных значений параметров г\, at и Uc гетеро структуры также учитывались в расчетах. На рис. 2 приведена одна из полученных расчетных зависимостей ширины меза-полоска, соответствующей условию одномодовой отсечки, от величины перепада эффективного показателя преломления для выбранного дизайна лазерной гетеро структуры (Я = 1480 нм) (рис. 1).
На основании проведенных вычислений из выращенной гетероструктуры партия (КР 1439-1), зонная диаграмма которой приведена на рис. 1, были изготовлены гетеролазеры мезаполосковой конструкции со следующими параметрами: W = 4.5мкм и AnL = (3.8-4.5) • 10-3. Для формирования мезаполоска наносилась маска из фоторезиста, через которую проводилось химическое травление [11]. В процессе травления по обе стороны от мезаполоска вытравливались канавки, глубина которых определялась положением стоп-слоя, сформированного в процессе роста в p-InP-эмиттере. Для достижения максимальной выходной мощности лазерного диода необходимо стремиться к увеличению ширины мезаполоска, что позволяет снизить плотность оптической мощности на выходном зеркале, а значит, повысить величину рабочего тока. Однако поскольку максимальная ширина мезаполоска Wmax одномодовых лазеров определяется также эффективностью ввода излучения в одномодовое волокно, верхний предел был выбран Wmax = 5мкм. Рис. 3. Ватт-амперная характеристика в непрерывном режиме генерации с температурой теплоотвода 20◦C во всем диапазоне токов накачки для лазерных диодов: a — партии КР1439-1 с длиной резонатора L = 1000 мкм, с естественными зеркалами на гранях резонатора; b — партии КР1439-2 с длиной резонатора L = 1500 мкм, с высокоотражающим (95%) и низкоотражающим (5%) покрытием на гранях резонатора. 2. Экспериментальные результаты Все изготовленные лазерные гетероструктуры меза-полосковой конструкции раскалывались на отдельные лазерные чипы с длиной резонатора L = 0.3-3мм, которые напаивались на медные теплоотводы полосковым контактом вниз с помощью индиевого припоя. Типичная ватт-амперная характеристика при непрерывном режиме накачки лазерных диодов, изготовленных на основе гетероструктуры партии КР1439-1, изображена на рис. 3,a. Видно, что уже при достаточно малых плотностях тока накачки происходит срыв ватт-амперной характеристики. Важно отметить, что этот срыв генерации имеет обратимый характер гистерезис-ного типа и, естественно, не связан с катастрофической оптической деградацией зеркал. Наблюдаемый эффект объясняется тем, что результаты расчетов, приведенные на рис. 2, в полной мере не отражают всех процессов, происходящих в реальных приборах. Так, известно, что увеличение концентрации свободных носителей заряда понижает коэффициент преломления полупроводникового материала [12]. Таким образом, с увеличением тока инжекции вплоть до порогового значения Ith падает коэффициент преломления активной области за счет накопления инжектированных носителей в области квантовых ям до величины пороговых концентраций nth и pth. Дальнейшее увеличение тока накачки приводит к повышению концентрации свободных носителей в волноводных слоях, что вызвано как процессом инжекции, так и выбросом электронов из квантовой ямы в барьерные слои [7,13]. Суммарный вклад инжектированных носителей в пределе может привести к коллапсу встроенного волновода или образованию антиволновода [14]. Срыв генерации наблюдался нами практически у всех лазерных диодов, изготовленных из гетероструктур партии КР 1439-1. Зависимость значений плотности тока накачки, при которых происходил срыв генерации, от длины резонатора лазерного диода имеет сублинейный характер. Данный факт может быть связан с нелинейным характером поведения зависимости пороговой концентрации носителей заряда от суммарных потерь [15]. В связи с тем что кпд лазерного диода не 100%, часть мощности рассеивается в виде тепла, что ведет к повышению температуры рабочей области лазерного диода. Величина перегрева может достигать 60° C и больше для мощных полупроводниковых лазерных диодов, работающих на максимальных значениях плотностей токов накачки [5]. Такой сильный перегрев активной области заметно влияет на значения коэффициентов преломления слоев, расположенных в прокачиваемой области лазерного диода. Известно, что повышение температуры увеличивает коэффициенты преломления полупроводниковых материалов, поэтому в целом повышается эффективный показатель преломления активной области, что ведет к повышению скачка эффективного показателя преломления для горизонтального волновода и, таким образом, к его усилению. В импульсном режиме генерации перегрев активной области относительно теплоотвода значительно меньше по сравнению с непрерывным режимом генерации [5]. Именно этим можно объяснить, что значения плотностей токов, при которых наблюдался срыв генерации в импульсном режиме (длительность импульса 1 мкс), были меньше, чем при работе лазерного диода в непрерывном режиме. Так, для лазерного диода с длиной резонатора L = 1 мм срыв наступал при 300 и 200 мА для непрерывного и импульсного режимов генерации соответственно. Для предотвращения срыва генерации были изготовлены мезаполосковые лазеры с большим скачком эффективного показателя преломления AnL = = (6.2-6.8)-10-3. Как следствие, лазерные диоды, изготовленные из такой гетероструктуры (партия КР1439-2), отличались отсутствием гистерезиса ватт-амперной характеристики во всем диапазоне стабильной одномодовой генерации. Таким образом, величина перепада эффективного коэффициента преломления, равная AnL = (6.2-6.8) • 10-3, вполне достаточна, чтобы предотвратить явление коллапса встроенного волновода, связанное с повышением концентрации свободных носителей заряда в волновод-ных слоях и активной области. Одномодовый режим генерации при непрерывной накачке таких лазерных диодов с естественными зеркалами сохранялся до мощности 70 мВт на одно выходное зеркало.Нанесение отражающих (R > 95%) Si/SiO2 и просветляющих (R < 5%) SiO2 покрытий на грани резонaтора Фабри-Перо лазерного диода позволило повысить выходную мощность излучения в одномодовом режиме генерации более чем в 2 раза. Такое увеличение связано не только с небольшим ватт-амперная характеристика в непрерывном режиме генерации таких лазерных диодов. Линейный характер зависимости наблюдается во всем диапазоне одномодового режима работы лазерного диода. При дальнейшем увеличении тока накачки в ватт-амперной характеристике последовательно наблюдаются „кинк“, плавное насыщение и срыв генерации (рис. 3, b). На рис. 4, a показаны типичные картины излучения в дальней зоне в плоскости, параллельной p-n-переходу, при различных значениях непрерывного тока накачки лазеров, изготовленных из гетероструктуры партии КР1439-2. Видно, что „кинку“ (излому) на ватт-амперной характеристике (рис. 3, b) соответствует сме щение картины дальнего поля относительно нормали к выходному зеркалу диода на несколько градусов. Такой характер поведения дальнего поля принято называть эффектом „отклонения луча“ (beam steering). Анализу этого явления посвящено множество работ, однако единого мнения о причинах, лежащих в его основе, нет [18-20]. Мы предполагаем, что это связано с трансформацией профиля эффективного показателя преломления, вызванной влиянием инжектированных носителей заряда на оптические свойства полупроводниковых материалов. Такая трансформация ведет к вытеснению аксиальной моды и необходимости распространения луча под некоторым углом относительно оси резонатора. Другими словами, запас перепада эффективного показателя преломления слишком мал, чтобы подавить влияние инжектированных носителей на волноводные свойства горизонтального волновода. Рис. 4. Распределение интенсивности излучения в дальней зоне и в плоскости, параллельной р—/7-переходу, при различных значениях выходной оптической мощности: a — для лазерного диода партии КР 1439-2, значение ширины поля на половине интенсивности (Ом),град.: 1 — 7.9, 2 — 8.0, 3 — 8.5, 4 — 9.0, 5 — 9.1, 6 — 7.9; мощность излучения в непрерывном режиме генерации, мВт: 1 — 5, 2 — 25, 3-50, 4 — 100, 5 — 185, 6 — 200; b — для лазерного диода партии КР1439-3, значение ширины поля на половине интенсивности (Ом),град.: 1 — 10.1, 2 — 11.5, 3 — 14.2, 4— 16.5, 5 — 17.3, 6 — 17.7, 7 — 17.9; мощность излучения в непрерывном режиме генерации, мВт: 1 — 20, 2 — 40, 3 — 60, 4 — 80, 5 — 100, 6 — 125, 7 — 150.
Необходимо отметить, что до появления излома на ватт-амперной характеристике картина дальнего поля излучения лазерных диодов практически не изменяется при увеличении тока накачки. Значение ширины диаграммы направленности излучения на полувысоте интенсивности (0..) слегка увеличивается от 8° (вблизи порога генерации) до 9° (выходная мощность 185 мВт). Такое стабильное поведение диаграммы направленности подтверждает одномодовый характер излучения лазерного диода в указанном диапазоне значений выходной мощности. Измеренная картина дальнего поля в плоскости, перпендикулярной р—^-переходу, также свидетельствует о генерации нулевой оптической моды. Величина S± составляет 38—40° во всем диапазоне токов накачки. Это хорошо согласуется с рассчитанным теоретически распределением поля в вертикальном направлении для данных значений толщины (Dw) и ширины запрещенной зоны {Е™) волноводных слоев (см. рис. 1). Дальнейшее увеличение скачка эффективного показателя преломления AnL до значений (7—8) • 10-3 (партия КР1439-3) приводит к возникновению кинка (излома) на ватт-амперной характеристике лазеров уже при токах накачки, близких пороговым значениям. При этом происходит непрерывный заметный рост полуширины диаграммы направленности излучения в горизонтальной плоскости с увеличением токов накачки. Необходимо отметить, что при этом распределение интенсивности излучения в дальней зоне хорошо описывается функцией Гаусса. Такой режим работы лазера можно назвать однолепестковым. И только при достаточно высоких плотностях токов накачки в картине дальнего поля появляются дополнительные максимумы, указывающие на присутствие мод высших порядков (рис. 4b). Исследование спектров излучения лазерных диодов партии КР 1439-3 показало, что излучение носит не одномодовый характер сразу после порога генерации. Это выражается в том, что кроме пиков, соответствующих только фундаментальной моде с межмодовым расстоянием dА, А- длина волныгенерации, Рис. 5. Спектр излучения лазерного диода, работающего при токе, равном 2Ith: a — партия КР1439-3, длина резонатора L = 770 мкм, 1 — пики, соответствующие аксиальной (фундаментальной) моде; 2 — пики, соответствующие модам высшего порядка; b — партия КР1439-2, L = 1500 мкм. В спектрах лазерных диодов, изготовленных из структур партий КР1439-1 и КР1439-2 (рис. 5,b), расстояния между всеми соседними пиками имели постоянные значения величины /S1, которые строго соответствовали значениям, найденным из выражения (1). И что особенно важно, данное соответствие сохранялось во всем диапазоне токов накачки лазерного диода, работающего в режиме одномодовой стабильной генерации. Для исследования и характеризации параметров изготовленных гетероструктур использовались в основном лазерные диоды с естественно сколотыми зеркалами. Рис. 6. Экспериментальная зависимость пороговой плотности тока (Jth) от обратной длины резонатора (1/L) для лазерных диодов партии КР1439-2: 1 — с шириной полоска W = 4.5 мкм, 2 — ширина полоска W = 100 мкм. Рис. 7. Экспериментальная зависимость обратной величины внешней дифференциальной квантовой эффективности (1/rjd) от длины резонатора (L) для лазерных диодов парии КР1439-2. Зависимости пороговой плотности тока от длины резонатора лазерных диодов, изготовленных из гетеро-структуры партии КР 1439-2, представлены на рис. 6. Для сравнения на этом же рисунке приведены данные для лазеров с широким полосковым контактом W = 100 мкм, которые были изготовлены из аналогичной гетерострук-туры. Пороговая плотность тока при бесконечной длине резонатора составила значения 190 А/см2 (W = 100 мкм) и 290 А/см2 (W = 4.5 мкм, партия КР1439-2). Возрастание пороговой плотности тока в мезаполосковых лазерах с узким контактом связано с боковым растеканием тока под мезаполосковым контактом [15]. Важными параметрами для достижения высокой мощности и эффективности работы лазерных диодов являются значения внутреннего квантового выхода стимулированного излучения rjj и внутренних оптических потерь at. Они определялись из экспериментальной зависимости обратной дифференциальной квантовой эффективности от длины резонатора лазеров (рис. 7). 3. Заключение Основным требованием обеспечения одномодового режима работы в широком диапазоне токов накачки для лазерных диодов уже с оптимизированным дизайном гетероструктуры является точный выбор значений скачка эффективного показателя преломления AnL в плоскости, параллельной/?-/7-переходу, между активной и пассивными областями мезаполоска. Любые вариации в значении оптимальной величины AnL как в большую, так и в меньшую стороны приводят к существенному ухудшению излучательных характеристик одномодового режима работы лазерного диода. Так, уменьшение AnL для диодов с узким мезаполоском (W < 4.5 мкм) и слабым продольным волноводом ведет к существенному увеличению пороговой плотности тока, в частности за счет эффекта растекания [15], и резкому снижению значений максимальных токов накачки, что в свою очередь вызвано срывом генерации. Следствием незначительного повышения величины AnL относительно его оптимального значения является то, что сразу за порогом генерации в спектре электролюминесценции лазерного диода появляются дополнительные пики, соответствующие модам высшего порядка. Таким образом, параметры квантово-размерной InGaAsP/InP-гетеро структуры раздельного ограничения со ступенчатым волноводом, выращенной методом МОС-гидридной эпитаксии, и мезаполосковой конструкцией лазерного диода были определены теоретически и экспериментально с целью достижения высокой выходной мощности при одномодовом режиме работы. В лазерах с шириной мезаполоскового контакта W = 4.5 мкм и AnL = (6.2-6.8) · 10-3 получена выходная непрерывная мощность излучения 185 мВт при одномодовом режиме работы лазерного диода (Я = 1480 нм). При такой мощности увеличение полуширины диаграммы направленности излучения в горизонтальной плоскости составило 1° по сравнению с пороговым значением. Спектр излучения состоял из набора продольных мод с фиксированным расстоянием ДА, соответствующим меж модовому расстоянию резонатора Фабри–Перо. Максимальная выходная непрерывная мощность излучения в изготовленных лазерах составила 300 мВт. Представляю несколько примеров производства силовых диодов. Кремниевые выпрямительные высоковольтные столбы Е306А, Е306Б Применение: Столбы предназначены для работы в радиоэлектронной аппаратуре широкого применения и, в частности, в гибридных схемах умножителей напряжения, в том числе для приборов ночного видения. Конструктивное исполнение: Конструктивное исполнение высоковольтного столба Е306 представляет собой монолитную систему без внутренних пустот, не содержащую пожароопасных элементов. Технология изготовления прибора предусматривает защиту боковой поверхности р-n перехода и одновременно герметизацию прибора за счет нанесения и оплавления высокотемпературного силикатного стекла (t плавл. более 700 'С). Такой способ герметизации, защиты и корпусирования обеспечивает наиболее высокую надежность их работы, а также отсутствие изменений параметров во времени по сравнению со всеми известными высоковольтными приборами данного класса. Основные эксплуатационные параметры
Силовые Press-Pack IGBT компании WESTCODE для тяговых электроприводов IGBT -модули прижимной конструкции играют особую роль в развитии железнодорожного транспорта. Применение этих перспективных приборов с минимальным весом и габаритами в тяговом преобразователе позволило повысить частоту переключения, упростить схему управления, минимизировать загрузку сети гармониками и обеспечить предельно низкие потери в обмотках трансформатора и дросселей. Структура IGBT Биполярный транзистор с изолированным затвором (IGBT - Insulated Gate Bipolar Transistors) - полностью управляемый полупроводниковый прибор, в основе которого трёхслойная структура. Его включение и выключение осуществляются подачей и снятием положительного напряжения между затвором и истоком. На рис.1 приведено условное обозначение IGBT.
IGBT являются продуктом развития технологии силовых транзисторов со структурой металл-оксид-полупроводник, управляемых электрическим полем (MOSFET-Metal-Oxid-Semiconductor-Field-Effect-Transistor) и сочетают в себе два транзистора в одной полупроводниковой структуре: биполярный (образующий силовой канал) и полевой (образующий канал управления). Эквивалентная схема включения двух транзисторов приведена на рис. 2. Прибор введён в силовую цепь выводами биполярного транзистора E (эмиттер) и C (коллектор), а в цепь управления - выводом G (затвор). Таким образом, IGBT имеет три внешних вывода: эмиттер, коллектор, затвор. Соединения эмиттера и стока (D), базы и истока (S) являются внутренними. Сочетание двух приборов в одной структуре позволило объединить достоинства полевых и биполярных транзисторов: высокое входное сопротивление с высокой токовой нагрузкой и малым сопротивлением во включённом состоянии. Преимущества прижимной конструкции IGBT Наряду с развитием традиционной технологии паяной конструкции силовых модулей с изолированным основанием продолжает интенсивно развиваться технология прижимной конструкции IGBT- модулей (см. рис.3), подобная таблеточной конструкции тиристоров SCR (Silicon Controlled Rectifier) и GTO (Gate Turn-Off) - press-pack technology, в которой наряду с уменьшением более чем в 10 раз теплового сопротивления и габаритов значительно улучшены надёжность, термоциклоустойчивость [1]. Высоких параметров IGBT- модулей прижимной конструкции достигла компания Westcode. |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, курсовые, дипломы, научные работы, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |