реферат скачать
 
Главная | Карта сайта
реферат скачать
РАЗДЕЛЫ

реферат скачать
ПАРТНЕРЫ

реферат скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат скачать
ПОИСК
Введите фамилию автора:


Мощные силовые диоды

Формирование горизонтального волновода в плоско­сти, параллельной р-/7-переходу лазерной гетерострук­туры, достигается за счет создания скачка эффектив­ного показателя преломления AnL между активной и пассивной областями мезаполоска. Для обеспечения од-номодового режима работы лазерного диода необходимо выбрать вполне определенное значение AnL. В мезапо­лосковой конструкции лазерного диода на основе КР РО ДГС AnL в основном зависит от следующих параметров: длины волны излучения (Я), ширины мезаполоскового контакта (W), глубины травления (Ah), толщины (Dw) и ширины запрещенной зоны (Е™) волноводных слоев. Концентрация свободных носителей в слоях гетеро­структуры и реальная температура в области активного слоя также влияют на значение AnL.

Расчет профиля эффективного показателя прелом­ления AnL в мезаполосковой конструкции лазерного диода на основе КР РО ДГС InGaAsP/InP выпол­нялся с помощью модели пассивного волновода [10]. В основании используемой модели лежит представление волноводных свойств в горизонтальном направлении через эффективные показатели преломления отдельно активной и пассивных областей лазера мезаполосковой конструкции. Расчет проводился для разных значений параметров Я, Е™, Dw и ДА гетероструктуры. Условия сохранения оптимальных значений параметров г\, at и Uc гетеро структуры также учитывались в расчетах. На рис. 2 приведена одна из полученных расчетных зависи­мостей ширины меза-полоска, соответствующей условию одномодовой отсечки, от величины перепада эффектив­ного показателя преломления для выбранного дизайна лазерной гетеро структуры (Я = 1480 нм) (рис. 1).


Рис. 2. Расчетная зависимость ширины мезаполоска W от скачка эффективного показателя преломления Aweff, соответ­ствующего условию отсечки первой моды.


На основании проведенных вычислений из вы­ращенной гетероструктуры партия (КР 1439-1), зон­ная диаграмма которой приведена на рис. 1, были изготовлены гетеролазеры мезаполосковой конструк­ции со следующими параметрами: W = 4.5мкм и AnL = (3.8-4.5) • 10-3.

Для формирования мезаполоска наносилась маска из фоторезиста, через которую проводилось химическое травление [11]. В процессе травления по обе стороны от мезаполоска вытравливались канавки, глубина которых определялась положением стоп-слоя, сформированного в процессе роста в p-InP-эмиттере.

Для достижения максимальной выходной мощности лазерного диода необходимо стремиться к увеличению ширины мезаполоска, что позволяет снизить плотность оптической мощности на выходном зеркале, а значит, повысить величину рабочего тока. Однако поскольку максимальная ширина мезаполоска Wmax одномодовых лазеров определяется также эффективностью ввода из­лучения в одномодовое волокно, верхний предел был выбран Wmax = 5мкм.

Рис. 3. Ватт-амперная характеристика в непрерывном ре­жиме генерации с температурой теплоотвода 20C во всем диапазоне токов накачки для лазерных диодов: a — партии КР1439-1 с длиной резонатора L = 1000 мкм, с естественными зеркалами на гранях резонатора; b — партии КР1439-2 с длиной резонатора L = 1500 мкм, с высокоотражающим (95%) и низкоотражающим (5%) покрытием на гранях резонатора.

2.   Экспериментальные результаты

Все изготовленные лазерные гетероструктуры меза-полосковой конструкции раскалывались на отдельные лазерные чипы с длиной резонатора L = 0.3-3мм, ко­торые напаивались на медные теплоотводы полосковым контактом вниз с помощью индиевого припоя.

Типичная ватт-амперная характеристика при непре­рывном режиме накачки лазерных диодов, изготовлен­ных на основе гетероструктуры партии КР1439-1, изоб­ражена на рис. 3,a. Видно, что уже при достаточно малых плотностях тока накачки происходит срыв ватт-амперной характеристики. Важно отметить, что этот срыв генерации имеет обратимый характер гистерезис-ного типа и, естественно, не связан с катастрофической оптической деградацией зеркал. Наблюдаемый эффект объясняется тем, что результаты расчетов, приведенные на рис. 2, в полной мере не отражают всех процессов, происходящих в реальных приборах. Так, известно, что увеличение концентрации свободных носителей заряда понижает коэффициент преломления полупроводнико­вого материала [12]. Таким образом, с увеличением тока инжекции вплоть до порогового значения Ith па­дает коэффициент преломления активной области за счет накопления инжектированных носителей в области квантовых ям до величины пороговых концентраций nth и pth. Дальнейшее увеличение тока накачки приводит к повышению концентрации свободных носителей в волноводных слоях, что вызвано как процессом инжек­ции, так и выбросом электронов из квантовой ямы в барьерные слои [7,13]. Суммарный вклад инжектирован­ных носителей в пределе может привести к коллапсу встроенного волновода или образованию антиволново­да [14]. Срыв генерации наблюдался нами практически у всех лазерных диодов, изготовленных из гетероструктур партии КР 1439-1. Зависимость значений плотности тока накачки, при которых происходил срыв генерации, от длины резонатора лазерного диода имеет сублинейный характер. Данный факт может быть связан с нелинейным характером поведения зависимости пороговой концен­трации носителей заряда от суммарных потерь [15].

В связи с тем что кпд лазерного диода не 100%, часть мощности рассеивается в виде тепла, что ведет к повышению температуры рабочей области лазерного диода. Величина перегрева может достигать 60° C и больше для мощных полупроводниковых лазерных ди­одов, работающих на максимальных значениях плотно­стей токов накачки [5]. Такой сильный перегрев активной области заметно влияет на значения коэффициентов преломления слоев, расположенных в прокачиваемой области лазерного диода. Известно, что повышение температуры увеличивает коэффициенты преломления полупроводниковых материалов, поэтому в целом повы­шается эффективный показатель преломления активной области, что ведет к повышению скачка эффективного показателя преломления для горизонтального волново­да и, таким образом, к его усилению. В импульсном режиме генерации перегрев активной области относи­тельно теплоотвода значительно меньше по сравнению с непрерывным режимом генерации [5]. Именно этим можно объяснить, что значения плотностей токов, при которых наблюдался срыв генерации в импульсном режиме (длительность импульса 1 мкс), были меньше, чем при работе лазерного диода в непрерывном режиме. Так, для лазерного диода с длиной резонатора L = 1 мм срыв наступал при 300 и 200 мА для непрерывного и импульсного режимов генерации соответственно.

Для предотвращения срыва генерации были изготовлены мезаполосковые лазеры с большим скачком эффективного показателя преломления AnL = = (6.2-6.8)-10-3. Как следствие, лазерные диоды, изготовленные из такой гетероструктуры (партия КР1439-2), отличались отсутствием гистерезиса ватт-амперной характеристики во всем диапазоне стабильной одномодовой генерации. Таким образом, величина перепада эффективного коэффициента преломления, равная AnL = (6.2-6.8) • 10-3, вполне достаточна, чтобы предотвратить явление коллапса встроенного волновода, связанное с повышением концентрации свободных носителей заряда в волновод-ных слоях и активной области. Одномодовый режим генерации при непрерывной накачке таких лазерных диодов с естественными зеркалами сохранялся до мощности 70 мВт на одно выходное зеркало.Нанесение отражающих (R > 95%) Si/SiO2 и просветляющих (R < 5%) SiO2 покрытий на грани резонaтора Фабри-Перо лазерного диода позволило повысить выходную мощность излучения в одномодовом режиме генерации более чем в 2 раза. Такое увеличение связано не только с небольшим ватт-амперная характеристика в непрерывном режиме генерации таких лазерных диодов. Линейный характер зависимости наблюдается во всем диапазоне одномодового режима работы лазерного диода. При дальнейшем увеличении тока накачки в ватт-амперной характеристике последовательно наблюдаются „кинк“, плавное насыщение и срыв генерации (рис. 3, b). На рис. 4, a показаны типичные картины излучения в дальней зоне в плоскости, параллельной p-n-пе­реходу, при различных значениях непрерывного тока накачки лазеров, изготовленных из гетероструктуры партии КР1439-2. Видно, что „кинку“ (излому) на ватт-амперной характеристике (рис. 3, b) соответствует сме щение картины дальнего поля относительно нормали к выходному зеркалу диода на несколько градусов. Такой характер поведения дальнего поля принято называть эффектом „отклонения луча“ (beam steering). Анали­зу этого явления посвящено множество работ, однако единого мнения о причинах, лежащих в его основе, нет [18-20]. Мы предполагаем, что это связано с транс­формацией профиля эффективного показателя прелом­ления, вызванной влиянием инжектированных носителей заряда на оптические свойства полупроводниковых ма­териалов. Такая трансформация ведет к вытеснению ак­сиальной моды и необходимости распространения луча под некоторым углом относительно оси резонатора. Дру­гими словами, запас перепада эффективного показателя преломления слишком мал, чтобы подавить влияние инжектированных носителей на волноводные свойства горизонтального волновода.

                                                                 Рис. 4. Распределение интенсивности излучения в дальней зоне и в плоскости, параллельной р—/7-переходу, при раз­личных значениях выходной оптической мощности: a — для лазерного диода партии КР 1439-2, значение ширины поля на половине интенсивности (Ом),град.: 1 — 7.9, 2 — 8.0, 3 — 8.5, 4 — 9.0, 5 — 9.1, 6 — 7.9; мощность излучения в  непрерывном  режиме  генерации, мВт:  —  5,  —  25,

3-50, 4 — 100, 5 — 185, 6 — 200; b — для лазерного диода партии КР1439-3, значение ширины поля на половине интенсивности  (Ом),град.:  1 —  10.1, 2 —  11.5, 3 —  14.2,

4— 16.5, 5 — 17.3, 6 — 17.7, 7 — 17.9; мощность излучения в непрерывном режиме генерации, мВт: 1 — 20, 2 — 40, 3 — 60, 4 — 80, 5 — 100, 6 — 125, 7 — 150.


 

Необходимо отметить, что до появления излома на ватт-амперной характеристике картина дальнего поля излучения лазерных диодов практически не изменяет­ся при увеличении тока накачки. Значение ширины диаграммы направленности излучения на полувысоте интенсивности (0..) слегка увеличивается от 8° (вблизи порога генерации) до 9° (выходная мощность 185 мВт). Такое стабильное поведение диаграммы направленности подтверждает одномодовый характер излучения лазер­ного диода в указанном диапазоне значений выходной мощности.

Измеренная картина дальнего поля в плоскости, пер­пендикулярной р—^-переходу, также свидетельствует о генерации нулевой оптической моды. Величина S± составляет 38—40° во всем диапазоне токов накачки. Это хорошо согласуется с рассчитанным теоретически распределением поля в вертикальном направлении для данных значений толщины (Dw) и ширины запрещенной зоны {Е™) волноводных слоев (см. рис. 1).

Дальнейшее увеличение скачка эффективного показа­теля преломления AnL до значений (7—8) • 10-3 (партия КР1439-3) приводит к возникновению кинка (излома) на ватт-амперной характеристике лазеров уже при то­ках накачки, близких пороговым значениям. При этом происходит непрерывный заметный рост полуширины диаграммы направленности излучения в горизонтальной плоскости с увеличением токов накачки. Необходимо отметить, что при этом распределение интенсивности излучения в дальней зоне хорошо описывается функцией Гаусса. Такой режим работы лазера можно назвать однолепестковым. И только при достаточно высоких плотностях токов накачки в картине дальнего поля появляются дополнительные максимумы, указывающие на присутствие мод высших порядков (рис. 4b).

Исследование спектров излучения лазерных диодов партии КР 1439-3 показало, что излучение носит не одномодовый характер сразу после порога генерации. Это выражается в том, что кроме пиков, соответству­ющих только  фундаментальной моде  с  межмодовым расстоянием dА, А-  длина волныгенерации,  

Рис. 5. Спектр излучения лазерного диода, работающего при токе, равном 2Ith: a — партия КР1439-3, длина резонатора L = 770 мкм, 1 — пики, соответствующие аксиальной (фунда­ментальной) моде; 2 — пики, соответствующие модам высшего порядка; b — партия КР1439-2, L = 1500 мкм.

В спектрах лазерных диодов, изготовленных из струк­тур партий КР1439-1 и КР1439-2 (рис. 5,b), расстоя­ния между всеми соседними пиками имели постоянные значения величины /S1, которые строго соответствовали значениям, найденным из выражения (1). И что осо­бенно важно, данное соответствие сохранялось во всем диапазоне токов накачки лазерного диода, работающего в режиме одномодовой стабильной генерации.

Для исследования и характеризации параметров изго­товленных гетероструктур использовались в основном лазерные диоды с естественно сколотыми зеркалами.

                                       Рис. 6. Экспериментальная зависимость пороговой плотности тока (Jth) от обратной длины резонатора (1/L) для лазерных диодов партии КР1439-2: 1 — с шириной полоска W = 4.5 мкм, 2 — ширина полоска W = 100 мкм.


Рис. 7. Экспериментальная зависимость обратной величины внешней дифференциальной квантовой эффективности (1/rjd) от длины резонатора (L) для лазерных диодов парии КР1439-2.


Зависимости пороговой плотности тока от длины резонатора лазерных диодов, изготовленных из гетеро-структуры партии КР 1439-2, представлены на рис. 6. Для сравнения на этом же рисунке приведены данные для лазеров с широким полосковым контактом W = 100 мкм, которые были изготовлены из аналогичной гетерострук-туры. Пороговая плотность тока при бесконечной длине резонатора составила значения 190 А/см2 (W = 100 мкм) и 290 А/см2 (W = 4.5 мкм, партия КР1439-2). Возраста­ние пороговой плотности тока в мезаполосковых лазе­рах с узким контактом связано с боковым растеканием тока под мезаполосковым контактом [15].

Важными параметрами для достижения высокой мощ­ности и эффективности работы лазерных диодов яв­ляются значения внутреннего квантового выхода сти­мулированного излучения rjj и внутренних оптических потерь at. Они определялись из экспериментальной зависимости обратной дифференциальной квантовой эффективности от длины резонатора лазеров (рис. 7).

3.   Заключение

Основным требованием обеспечения одномодового режима работы в широком диапазоне токов накачки для лазерных диодов уже с оптимизированным дизай­ном гетероструктуры является точный выбор значений скачка эффективного показателя преломления AnL в плоскости, параллельной/?-/7-переходу, между активной и пассивными областями мезаполоска. Любые вариации в значении оптимальной величины AnL как в большую, так и в меньшую стороны приводят к существенному ухудшению излучательных характеристик одномодового режима работы лазерного диода. Так, уменьшение AnL для диодов с узким мезаполоском (W < 4.5 мкм) и слабым продольным волноводом ведет к существенному увеличению пороговой плотности тока, в частности за счет эффекта растекания [15], и резкому снижению зна­чений максимальных токов накачки, что в свою очередь вызвано срывом генерации. Следствием незначительного повышения величины AnL относительно его оптимально­го значения является то, что сразу за порогом генерации в спектре электролюминесценции лазерного диода появ­ляются дополнительные пики, соответствующие модам высшего порядка.

Таким образом, параметры квантово-размерной InGaAsP/InP-гетеро структуры раздельного ограничения со ступенчатым волноводом, выращенной методом МОС-гидридной эпитаксии, и мезаполосковой конструк­цией лазерного диода были определены теоретически и экспериментально с целью достижения высокой выход­ной мощности при одномодовом режиме работы. В лазе­рах с шириной мезаполоскового контакта W = 4.5 мкм и AnL = (6.2-6.8) · 10-3 получена выходная непрерывная мощность излучения 185 мВт при одномодовом режиме работы лазерного диода (Я = 1480 нм). При такой мощности увеличение полуширины диаграммы направленности излучения в горизонтальной плоскости составило 1° по сравнению с пороговым значением. Спектр излучения состоял из набора продольных мод с  фиксированным расстоянием ДА,  соответствующим меж модовому расстоянию резонатора Фабри–Перо. Максимальная выходная непрерывная мощность излу­чения в изготовленных лазерах составила 300 мВт.


Представляю несколько примеров производства силовых диодов.



Кремниевые выпрямительные высоковольтные столбы Е306А, Е306Б

Применение:

Столбы предназначены для работы в радиоэлектронной аппаратуре широкого применения и, в частности, в гибридных схемах умножителей напряжения, в том числе для приборов ночного видения.

Конструктивное исполнение:

Конструктивное исполнение высоковольтного столба Е306 представляет собой монолитную систему без внутренних пустот, не содержащую пожароопасных элементов. Технология изготовления прибора предусматривает защиту боковой поверхности р-n перехода и одновременно герметизацию прибора за счет нанесения и оплавления высокотемпературного силикатного стекла (t плавл. более 700 'С). Такой способ герметизации, защиты и корпусирования обеспечивает наиболее высокую надежность их работы, а также отсутствие изменений параметров во времени по сравнению со всеми известными высоковольтными приборами данного класса.

Основные эксплуатационные параметры


Е306 А

Е306 Б

Импульсное или постоянное обратное напряжение, В

2000

3000

Номинальный ток, мА

1,0

1,0

Постоянный обратный ток*, мкА

0,03

0,05

Масса, г

? 0,1

? 0,1

Допустимая частота рабочего напряжения, кГц

50

50

Постоянное прямое напряжение (при Iпр =1,0 мА) В

6,0

6,0

Рабочая температура окружающей среды, °С

–45...+60

–45...+60



Силовые Press-Pack IGBT компании WESTCODE для тяговых электроприводов


    IGBT -модули прижимной конструкции играют особую роль в развитии железнодорожного транспорта. Применение этих перспективных приборов с минимальным весом и габаритами в тяговом преобразователе позволило повысить частоту переключения, упростить схему управления, минимизировать загрузку сети гармониками и обеспечить предельно низкие потери в обмотках трансформатора и дросселей.


    Структура IGBT

    Биполярный транзистор с изолированным затвором (IGBT - Insulated Gate Bipolar Transistors) - полностью управляемый полупроводниковый прибор, в основе которого трёхслойная структура. Его включение и выключение осуществляются подачей и снятием положительного напряжения между затвором и истоком. На рис.1 приведено условное обозначение IGBT.


рис. 1. Условное обозначение IGBT

рис. 2. Схема соединения транзисторов в единой структуре IGBT

    IGBT являются продуктом развития технологии силовых транзисторов со структурой металл-оксид-полупроводник, управляемых электрическим полем (MOSFET-Metal-Oxid-Semiconductor-Field-Effect-Transistor) и сочетают в себе два транзистора в одной полупроводниковой структуре: биполярный (образующий силовой канал) и полевой (образующий канал управления). Эквивалентная схема включения двух транзисторов приведена на рис. 2. Прибор введён в силовую цепь выводами биполярного транзистора E (эмиттер) и C (коллектор), а в цепь управления - выводом G (затвор).

    Таким образом, IGBT имеет три внешних вывода: эмиттер, коллектор, затвор. Соединения эмиттера и стока (D), базы и истока (S) являются внутренними. Сочетание двух приборов в одной структуре позволило объединить достоинства полевых и биполярных транзисторов: высокое входное сопротивление с высокой токовой нагрузкой и малым сопротивлением во включённом состоянии.


    Преимущества прижимной конструкции IGBT

    Наряду с развитием традиционной технологии паяной конструкции силовых модулей с изолированным основанием продолжает интенсивно развиваться технология прижимной конструкции IGBT- модулей (см. рис.3), подобная таблеточной конструкции тиристоров SCR (Silicon Controlled Rectifier) и GTO (Gate Turn-Off) - press-pack technology, в которой наряду с уменьшением более чем в 10 раз теплового сопротивления и габаритов значительно улучшены надёжность, термоциклоустойчивость [1]. Высоких параметров IGBT- модулей прижимной конструкции достигла компания Westcode.

Страницы: 1, 2, 3, 4


реферат скачать
НОВОСТИ реферат скачать
реферат скачать
ВХОД реферат скачать
Логин:
Пароль:
регистрация
забыли пароль?

реферат скачать    
реферат скачать
ТЕГИ реферат скачать

Рефераты бесплатно, курсовые, дипломы, научные работы, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.