реферат скачать
 
Главная | Карта сайта
реферат скачать
РАЗДЕЛЫ

реферат скачать
ПАРТНЕРЫ

реферат скачать
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

реферат скачать
ПОИСК
Введите фамилию автора:


Расчет конденсатора

Расчет конденсатора

ВВЕДЕНИЕ


В химической промышленности широко распространены тепловые процессы - нагревание и охлаждение жидкостей и газов и конденсация паров, которые проводятся в теплообменных аппаратах. Теплообменные аппараты или просто теплообменники используются практически во всех отраслях промышленности. Их основная задача обеспечить температурный режим технологических процессов.

В настоящее время все теплообменные аппараты, используемые в химической промышленности, подразделяются на определённые группы по следующим признакам: по назначению (нагреватели, испарители и кипятильники; холодильники, конденсаторы и т. д.),по режиму работы, по особенностям конструкции и т. д. Холодильники и конденсаторы служат для охлаждения потока или конденсации паров с применением специальных хладоагентов (вода, воздух, пропан, хлористый метил, фреоны и т. д.).

Поверхностные теплообменные аппараты можно разделить на следующие типы по конструктивным признакам:

а) кожухотрубчатые теплообменники (жёсткого типа; с линзовым компенсатором на корпусе; с плавающей головкой; с U-образными трубками);

б) теплообменники типа “труба в трубе”;

в) подогреватели с паровым пространством (рибойлеры);

г)конденсаторы воздушного охлаждения.

Кожухотрубчатые теплообменники в настоящее время наиболее широко распространены, по некоторым данным они составляют до 80% от всей теплообменной аппаратуры. Основной частью такого теплообменника является пучок труб, закреплённых в трубных решётках. Трубки располагаются в трубном пучке в шахматном порядке или по вершинам треугольников. Одна из теплообменивающихся сред движется по трубкам, а другая – внутри корпуса между трубками.

Достоинством кожухотрубчатого теплообменника является возможность получения значительной поверхности теплообмена при сравнительно небольших габаритах и хорошо освоенная; недостатком – более высокий расход материала по сравнению с некоторыми современными типами теплообменных аппаратов (спиральными, пластинчатыми теплообменниками и т. д.). Теплообменники могут быть вертикального горизонтального исполнения. Оба варианта установки одинаково широко распространены и выбираются в основном по соображениям монтажа: вертикальные занимают меньшую площадь в цехе, горизонтальные могут быть размещены в сравнительно невысоком помещении. Материал изготовления теплообменников – углеродистая или нержавеющая сталь.

По оценкам экспертов на изготовление трубчатых теплообменников расходуется около трети всего металла, потребляемого машиностроением. Поэтому разработка методов интенсификации теплообмена способствующих снижению массы теплообменников, экономии материалов, является актуальной проблемой, которой занимаются специалисты многих стран. Одним из наиболее простых и эффективных путей интенсификации теплообмена является изменение формы и режима движения теплоносителя.

Разделяемая смесь (бензол-толуол) обладает токсичными, коррозийными свойствами. Выберем для изготовления аппарата  марку стали: обычные М.Ст.2 , М..Ст.3..                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 










1.РАСЧЁТНАЯ ЧАСТЬ


1.1ТЕПЛОВОЙ РАСЧЁТ

Цель: нахождение поверхности теплообмена. По рассчитанной поверхности производится подбор нормализированного варианта теплообменника по каталогам. Величину необходимой поверхности теплообмена определяем на основе уравнения теплопередачи  [1]:


Q = KFΔtср.   (1)


где                     Q - тепловая нагрузка аппарата Вт,

                            K – коэффициент теплопередачи Вт/м²К,

                            F – поверхность теплообмена м²,

                            ∆tср.  –  средняя движущая сила процесса теплопередачи К,

В соответствии с приведённым уравнением поверхность теплообмена можно определить следующим образом:                                                                                                                 

                                                                         ( 2 )         

   

1.1.1. ТЕПЛОВОЙ БАЛАНС

  Цель: определение тепловой нагрузки аппарата и нахождение неизвестного расхода теплоносителя.

Для нахождения тепловой нагрузки аппарата составим уравнение теплового баланса процесса. Процесс идёт с изменением агрегатного состояния горячего теплоносителя, поэтому уравнение теплового баланса имеет вид:

ŋGг r = Gх  ( Iхк – Iхн )    (3)

где                      ŋ – величина тепловых потерь равная 5%,

                           G – расход горячего теплоносителя, кг/с,

                           r– удельная теплота фазового перехода, Дж/кг,

                           G – расход холодного теплоносителя, кг/с,

                           I – энтальпия вещества потока, Дж/кг,

Энтальпии веществ найдём по уравнению:

I = Cp t       (4 )

где                      Ср – теплоёмкость теплоносителя

                              при определяющей температуре, Дж/кг град,

                              t – температура теплоносителя, град.

Для нахождения температуры, при которой ведётся конденсация воспользуемся t x (y) диаграммой. В основе построения лежат законы Дальтона, Рауля и Рауля – Дальтона. Это рабочая диаграмма зависимости температуры кипения жидкости  от состава и температуры конденсации пара в зависимости от его состава. Состав бинарной смеси всегда определяется по низкокипящему компоненту.

tнк = 86° (бензол)      [ 1 ]

tвк  = 117° (толуол)    [ 1 ]   

                                                                                                     Таблица № 1

P°нк

P°вк

П

Xнк

Y* нк

86

912

365

912

1

1

88

963

387

912

0,91

0,96

90

1016

408

912

0,82

0,91

92

1081

440

912

0,73

0,86

94

1147

472

912

0,65

0,81

96

1212

504

912

0,57

0,75

98

1278

536

912

0,50

0,70

100

1344

571

912

0,44

0,64

102

1424

607

912

0,37

0,57

104

1504

643

912

0,31

0,51

106

1584

679

912

0,25

0,43

108

1644

715

912

0,21

0,37

110

1748

751

912

0,12

0,23

112

1846

795

912

0,11

0,22

114

1944

839

912

0,06

0,12

116

2042

883

912

0,02

0,04

117

2091

905

912

0,005

0,01




Рисунок № 1


                                                                                  Рисунок №2

Температура конденсации равна 89°С                                                                                                                                                          

                                                                                                                                

            tгн                       89º                   tгк

                                                                                                                                                          

            tхк=45º

                                                               tхн=15º

     

Рисунок №3 Температурная диаграмма.

       По формуле (4) найдём энтальпии при заданных температурах:


Ср15= 4173,24   Дж/кг град..   [ 1 ]

 Cp45=4183,715  Дж/кг град.   [ 1 ]    

                  I15вода   =  4173,24 · 15 = 62598,6  Дж/кг ,

                  I45вода  = 4183,715 · 45 = 188267,1  Дж/кг ,

 Для нахождения удельной теплоты фазового перехода воспользуемся формулой:

                                       Rсм =  r1  x1  +  r2  x2              (5)

x –  массовая доля компонента в смеси  кгком./кгсм.  ,


Ма   · х

                                                    х = ──────

Мсм

            78 · 0,92

Х = ───────── = 0,78  кмоль ком./кмоль см.,

               92

хбензол = 0,78; хтолуола = 1 – 0,78 = 0,22


r бензола = 418203,9   Дж/кг , rтолуола =418455,3    Дж/кг           [ 1 ]

               

   rcm = 418203.9 * 0.92 + 418455.3 * 0.08 = 418223.9  Дж/кг   

       Из формулы (3) найдём расход холодного теплоносителя: 

                                       0,95 · 418223,9 · 6500

                  Gx = ────────────────── = 5,7   кг/с      

                           (188267,1 – 62598,6) · 3600

          

  Зная расход холодного теплоносителя и энтальпии при заданных температурах найдем тепловую нагрузку аппарата по правой части уравнения (3).


                                   Q = Gх ( Iхк  - Iхн )


                Q = 5,7(188267,1-62598,6)=716310,45 Вт  

 

1.1.2. ОПРЕДЕЛЕНИЕ ДВИЖУЩЕЙ СИЛЫ ПРОЦЕССА

В  самом общем случае температуры теплоносителей могут изменяться, а могут оставаться постоянными вдоль поверхности теплопередачи. Часто встречаются такие варианты, когда температура одного теплоносителя не изменяется, в то время как другого - изменяется (увеличивается или уменьшается). В этих случаях для расчета процесса теплопередачи вводят понятие о средней движущей силе процесса теплопередачи.

На практике среднюю движущую силу процесса теплопередачи рассчитывают следующим образом [1]:


∆tб  - ∆tм

∆tср = ─────────     (6)

ln (∆tб  / ∆tм )


где                                 ∆tб  = tгн – tхн   =89° – 15° = 74°C

∆tм  = tгн –tхк  = 89° – 45° = 44°C


74 - 44

∆tср = ───────────  = 58°C

ln (74 / 44)




1.1.3.ОПРЕДЕЛЕНИЕ СРЕДНИХ ТЕМПЕРАТУР ТЕПЛОНОСИТЕЛЕЙ


Процесс конденсации насыщенного водяного пара ведётся при постоянной температуре. Эта температура и будет средней температурой горячего теплоносителя. Среднюю температуру холодного теплоносителя вычислим по формуле:


tхср  = tгср - ∆tср = 89° - 58° =31°С


1.1.4. НАХОЖДЕНИЕ КОЭФФИЦИЕНТА ТЕПЛОПЕРЕДАЧИ

Вначале на первом этапе  принимаем ориентировочное значение коэффициента теплопередачи Кор. и рассчитываем ориентировочное значение теплопередающей поверхности Fор.   По уравнению (2) . После этого по ориентировочному значению теплопередающей поверхности подбираем по табличным данным нормализированный вариант конструкции теплообменного аппарата, а затем проводим уточнённый расчёт коэффициентов теплоотдачи и теплопередачи и требуемой поверхности          ( Fрасч. ).


Примем  Кор. =300   Вт/м²град.            [ 2 ]

По уравнению (2 ) рассчитаем ориентировочную поверхность теплообмена:


                                                         716310,45

Fор. =  ──────── = 41   м²

                                                          300 · 58

Рассчитав Fор. Подбираем по каталогам нормализированные варианты теплообменных аппаратов.

Для каждого из аппаратов рассчитываем критерий Рейнольдса [1]:


Re = ω · dэ · ρ / μ      (7)

где                            ω – линейная скорость потока  м/с ,

                                  Dэ – диаметр эквивалентный   м ,

                                  ρ – плотность вещества   кг/м³ ,

                                  μ – вязкость вещества  Па/с   


Скорость рассчитываем по формуле:

ω = М / ρ·S       (8)

где                            М – массовый расход теплоносителя  кг/с  ,

                                  ρ – плотность вещества   кг/м³  ,

                                 S – площадь сечения одного хода по трубам   м² ,


Таблица 2   Параметры кожухотрубчатых теплообменников и холодильников в соответствии с ГОСТ 15118-79, ГОСТ 15120-79 и ГОСТ 15122-79         [ 2 ]





Дк. мм

Дтруб, мм

Число ходов

Общее число труб, шт.

Поверхность теплообмена (м²) при длине труб,м (рассчитана по наружному диаметру труб)

Площадь самого узкого сечения потока в межтрубном пространстве м²

Площадь сечения одного хода по трубам, м²

ω

Re







2

4





11

400

20х2

1

181


46

0,017

0,036

0,05

953,89

22

400

20х2

2

166


42

0,017

0,017

0,106

2021,18

33

600

20х2

4

334

42


0,041

0,016

0,113

2149,11

44

600

20х2

6

316

40


0,037

0,009

0,2010

3819,38

55

600

25х2

1

257

40


0,040

0,089

0,0203

506,28


Выбираем теплообменник №4, так как  у него значение Рейнольдса наибольшее и равно 3819,38. Режим переходный  2300<Re<10000.

Метод и уравнение для расчёта коэффициентов теплоотдачи определяются, главным образом, характером теплообмена, условиями гидродинамического взаимодействия теплоносителя с поверхностью теплообмена и конструкцией теплообменного аппарата.

Теплоотдача при плёночной конденсации насыщенного пара на наружной поверхности  пучка вертикальных труб рассчитывается по уравнению [1]:

                                                 _________________

                       αг  = 3,78 · λ · ³√ ρ² ·N · dн / μ ·Gг                              (9)


                                          

где                     α - коэффициент теплоотдачи, Вт/м²К ,

                           λ – коэффициент теплопроводности теплоносителя

                                 при определяющей температуре, Вт/мК ,

                           μ – вязкость теплоносителя при определяющей температуре                   Па*с,

                           ρ – плотность вещества, кг/м³ ,

                           λ, μ, ρ – для плёнки конденсата,

                           N – количество трубок в кожухотрубчатом  теплообменнике,

                           dнар. – наружный диаметр трубок в теплообменнике, м,

                           Gг – расход горячего теплоносителя,  кг/с,


λ см =   λ2 ( х2 ) + λ1 ( 1-х2 ) – 0,72 (  λ2 -  λ 1) · х2 ( 1 – х2 )   (10)

λ89бензол=0,1283 Вт/м ч град,                                                     

 λ89толуол=0,1214   Вт/м ч град ,     [1]


λсм = 0,1283  · 0,78 + 0,1214 (1- 0,78) – 0,72 (0,1283 – 0,1214) · 0,78 (1 – 0,78)      =     0,1259215  Вт/ мК

                

  ρ89б = 797,4 кг/м³ ;                                   ρ89т =792 кг/м³                [ 1 ]

1                хб                    хт

          ────    =  ─────   + ─────       (11)

ρсм                  ρб                ρ


           1                0,78                0,22

────  =     ────   +    ─────

ρсм            797,4             792


ρсм    = 796.812   кг/м³


lgμсм = х1  lgμ1 + x2 lgμ2   (12)

х1 , x2 –мольные доли компонента в смеси   кмоль комп. / кмоль см ,

μ89бензола = 0,000294  Па с;    μ89толуола = 0,0002998  Па с  [ 1 ]


lgμсм =  0.92 · lg0.000294 + 0.08 · lg0.0002998 = 0.275 · 10-3  Па*с


                                                         6500

Gг  = ──── = 1,8  кг/с

                                                          3600

По формуле ( 9 ) найдём коэффициент теплоотдачи:

                                            _________________________________

Страницы: 1, 2


реферат скачать
НОВОСТИ реферат скачать
реферат скачать
ВХОД реферат скачать
Логин:
Пароль:
регистрация
забыли пароль?

реферат скачать    
реферат скачать
ТЕГИ реферат скачать

Рефераты бесплатно, курсовые, дипломы, научные работы, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.